

Empower the World

NM8N Moulded Case Circuit Breakers

Air Circuit Breaker

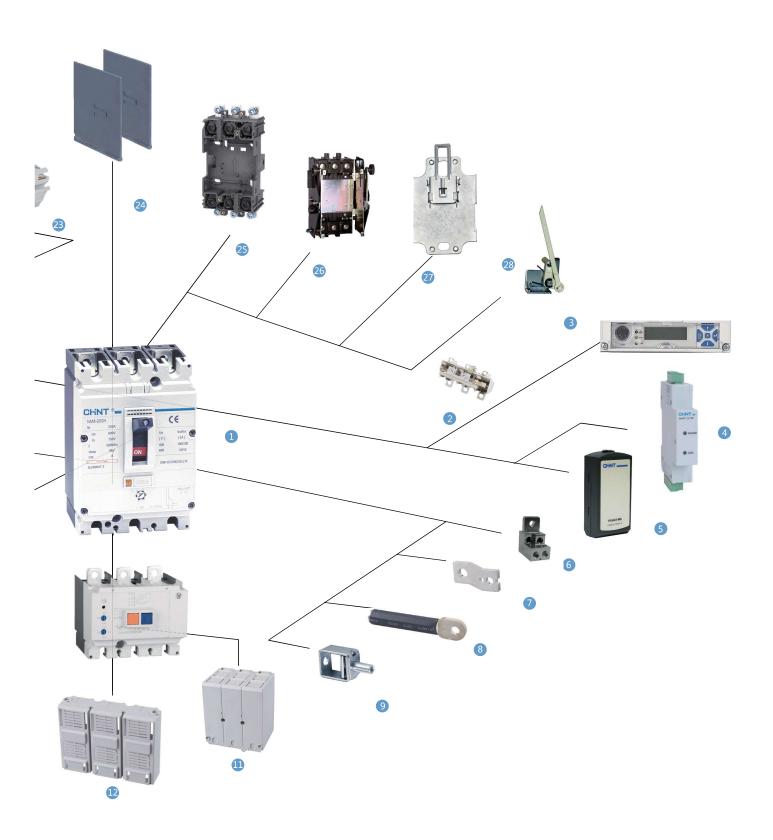
MCCB

NM8N

Page P-001

NM1

Page P-087



NM8N Moulded Case Circuit Breaker

$\overline{}$	
1	Body

- 2 Thermo magnetic release
- (3) Electronic release
- (4) Communication module
- 5 Battery box
- (6) Cable connector
- 7 Front connection plate
- 8 Rear connection plate
- 9 Cage clamp terminal
- (10) Residual current protection module
- (11) Long terminal cover
- (12) Short terminal cover
- (13) Direct rotary handle
- (14) Economic extended rotary handle
- (15) Extended rotary handle
- (16) Motor driven operating mechanism
- (17) Mechanical interlock
- (18) Locking system
- (19) Closing electromagnet
- (20) Under-voltage release
- (21) Shunt re**l**ease
- (22) Alarm contact
- (23) Auxi**l**iary contact
- (24) Interphase barrier
- (25) Plug-in base
- (26) Draw-out base
- (27) DIN rail adaptor
- (28) Plug and pull safety device

Contents

1. General	01
2. Operating conditions	. 01
3. Type designation	02
4. Technical data	04
5. Release	10
6. Tripping curve	13
7. Mounting of circuit breaker	20
8. Overall and Mounting Dimensions	21
9. Accessories characteristics and installation	49
10. Technical Supplement	71
11. Ordering notice	80

1. General

NM8N series moulded case circuit breaker is suitable for the circuit of AC 50/60Hz, with rated voltage AC690V and below, DC system rated voltage DC1000V and below, and rated current of 16A and 1600A. It can protect circuits and electric equipment against overload, short circuit or undervoltage, and can also provide protection of overload, short circuit and under voltage for infrequent start of motor.

Products have functions of power distribution protection, motor protection, residual current protection and isolation.

The circuit breaker can be installed vertically, installed horizontally and can also enter the line from the bottom.

Standards compliant: IEC 60947-1 general rules for low-voltage switchgear and control equipment; IEC 60947-2 low-voltage switchgear and control equipment circuit breakers; IEC 60947-2 low-voltage switchgear and control equipment switches, disconnectors and fuse combination appliances; IEC 60947-4-1 Electromechanical contactors and motor starters (including motor protectors) for low voltage switchgear and control equipment

2. Operating conditions

2.1 Temperature:

Operating and storage temperature is -40° C~+70° C; the average value within 24 hours does not exceed +35° C; when the ambient temperature is -40° C~+70° C, users need to consider derating or temperature compensation whose details can be referred to in Page

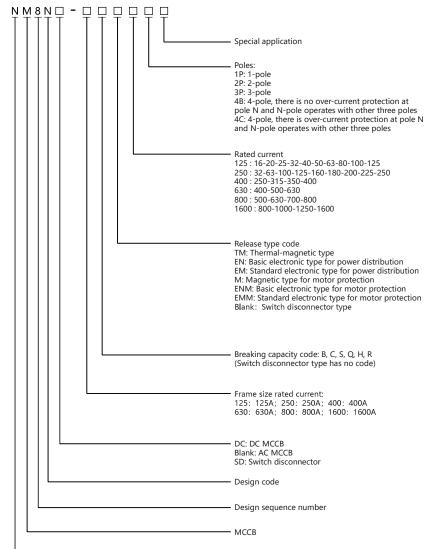
2.2 Altitude: ≤ 2000m;

2.3 Pollution grade: Grade 3;

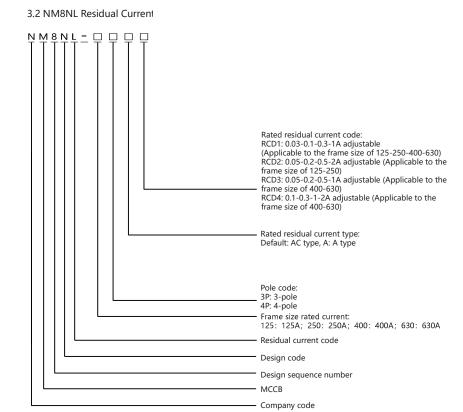
2.4 IP grade: IP40

2.5 Air conditions:

At mounting site, relative humidity not exceed 50% at the max temperature of +40 $^\circ\!\! C$, higher relative humidity is allowable under lower temperature. For example, RH could be 90% at +20 $^\circ\!\! C$, special measures should be taken to occurrence of dews.


3. Type designation

3.1 NM8N Moulded Case Circuit Breaker and Switch Disconnector



- Company code

4. Technical data

NM8N Moulded Ca	se Circuit Breaker	125					250						
Data dan amatina	Magnetic type	16-20	-25-32-40	0-50-63-8	80-100-125	,	125-1	60-180-2	00-225-2	50			
Rated operating current In (A), 40 °C	Thermal-magnetic type	16-20	-25-32-40	0-50-63-8	30-100-125	;	125-1	60-180-2	00-225-2	50			
current in (1), 10 C	Electronic type						32-63	-100-160-	250				
Electric characterist	ics	,											
Rated insulation vo	ltage Ui (V)	1000					1000						
Rated impulse with:	stand voltage (kV)	8					8						
Rated operational v	oltage Ue(V),AC 50/60Hz	380/4	00/415,44	10,500,66	0/690		380/4	00/415,44					
Breaking capacity co		С	S	Q	Н	R	С	S	Q	Н	R		
breaking capacity co	1P	•	5 ■	<u> </u>	- ''-	_	•	.	<u> </u>		_		
	2P			-		-	-		-	-	-		
Number of poles	3P	-				-		_ -					
	4P	-				-	-				-		
	AC220/230/240V ¹⁾	36	50				36	50			_		
Rated ultimate	AC380/400/415V	36	50	70	100	150	36	50	70	100	150		
short-circuit	AC440V	36	50	70	100	100	36	50	70	100	100		
breaking	AC500V	25	40	40	50	50	25	40	40	50	50		
capacityIcu(kA)	AC660/690V	6	8	8	10	10	6	8	8	10	10		
	AC220/230/240V ¹⁾	36	50	_	_	_	36	50	_	_	_		
Rated service	AC380/400/415V	36	50	70	100	150	36	50	70	100	150		
breaking	AC440V	36	50	70	100	100	36	50	70	100	100		
capacityIcs(kA)	AC500V	25	40	40	50	50	25	40	40	50	50		
	AC660/690V	6	8	8	10	10	6	8	8	10	10		
Rated short-time wi	ithstand current Icw(kA,1s)	 					1(32A	,63A);2(10	00A,160A	;3(250A)			
Standard	. , ,	IEC/EI	N 60947-2	2									
Utilization category		Α					Α						
	- ,						^						
Ambient temperatu	re	-40°C ~+70°C ^{₹)}											
Safety of insulation													
Arcing distance Mechanical life		0						0					
(CO recycle)	Maintenance free	15000)				15000)					
Electrical life	AC415V,In	8000					6000						
(CO recycle)	AC690V,In	2000					1500						
Release units												,	
51 · 11 · 1	TM						-						
Distribution protection	EN	-					-						
protection	EM	-					-						
	М	-					-						
Motor protection	ENM						-						
protection	EMM	-					-						
Mounting and conn													
Fixed	Front connection	•					•						
· ixea	Rear connection	-					-						
Plug-in ³⁾	Front connection	•					•						
riag iii	Rear connection						•						
Draw-out ³⁾	Front connection												
	Rear connection	-					_						
DIN rail	Front connection	-					-						
Dimension		1					1						
Dimension (mm)	Width (1P/2P/3P/4P)	_	/90/120				_	/105/140					
W×H×D	Height	140					157						
	Depth	78.5					88.7						
Weight													
	1P	0.5					0.75						
Weight(kg)/Fixed	2P	0.83					1.3	-	0/51/51				
- -	3P	1.19					1.85(TM/M); 2.0(EN/EM)						
	4P	1.55					2.5(TN	и/M); 2.6	55(EN/EM))			

Note: $^{1)}$ For 1 pole product only;

The operating temperature of basic (dial code) electronic type is -35° $C\sim+70^{\circ}$ C, and the operating temperature of standard (liquid crystal) electronic type is -25° $C\sim+70^{\circ}$ C;

For 3/4 pole product only ;

⁴⁾ The data in "()" is for motor type.

	400					630					800					1600		
	250-3	15-350-	400			400-5	00				500-6	30-700	-800			-		
	250-3	15-350-	400			400-5	00				500-6	30-700	-800			800-1	.000-125	50-1600
	250-4	00				400-6	30				630-8	300				800-1	.000-125	50-1600
	1000					1000					1000					1000		
	12					12					12					8		
	380/4	00/415,4	440,500	,660/690	ı	380/4	00/415,	440,500,	660/690		380/4	100/415,	440,500	,660/690		380/400/415,440, 500,660/690		
	С	S	Q	Н	R	C	S	Q	Н	R	С	S	Q	Н	R	S	Q	Н
	_										_					<u> -</u>		
	—														_	<u> </u>		
	-	•	•	•	•	•	•	•	•	•	•	•			•	-	•	•
	-	•	•	•	•	•	-	•	•	•	•	•	•	•	•	•	•	•
	-	_	_	_	_	-	_	_	_	_	-	_	_	_	_	-	_	_
	36	50	70	100	150	36	50	70	100	150	36	50	70	100	150	50	70	100
	36	50	70	100	100	36	50	70	100	100	36	50	70	100	100	50	65	_
	25	40	40	50	50	25	40	40	50	50	25	40	40	50	100	40	50	_
	10	12	12	15	15	10	12	12	15	15	12	15	15	20	30	30	30	30
-	_			_		<u> </u>					_					<u> -</u>		
	36	50	70	100	150	36	50	70	100	150	36	50	70	100	150	50	70	70
	36	50	70	100	100	36	50	70	100	100	36	50	70	100	_ 100	40	50	
	25	40	40	50	50	25	40	40	50	50	25	40	40	50	_ 100	30	40	
	10	12	12	15	15	10	12	12	15	15	12	15	15	15	15	30	30	30
	5					5(400	A);8(630)A)			10					20		
	IEC/E	N 60947	-2								1					A /Th =		
	A(The	rmal-ma	agnetic),	/B(Electr	onic)	A(The	rmal-m	agnetic),	/B(Electr	onic)	A(The	ermal-m	agnetic)	/B(Electr	onic)	B(Elect	mal-mag ronic)	netic)/
	-40°C	~+70°C	2)													1 - (,	
	-															-		
	0					0					0					0		
	15000					15000	1				10000	า				6000		
		'										,						
	4000					_	(400A)/3	000(630	A)		2000					1000		
	1500					1500					1000					1000		
	1																	
	-					-					•					•		
	-					-					-					-		
	-					•					•					-		
	-					•					•					-		
	-					-					•					-		
	-					-					-					_		
						1_										1_		
	-					-					1_					-		
	-					-					•							
	-					-												
						-					-					=		
	_					_												
	140/1	85				140/1	85				195/2	260				210/2	80	
	255	-				255					300					286		
	113					113					133						195) ⁴⁾	
						123												
																_		
	 		-			 					_					 		
	5.2(TN	л/M) ; 5	.8(EN/F	M)		5.5(TI	M/M) : 6	5.0(EN/E	M)			ΓM/M) ;	10.5(EN	I/EM)		13.5(1	L6) ⁴⁾	
		л, т,						3.0(EN/E				ΓM/M) ;				17.5(2		
	1 (. 1.	, , , ,	, _	•,		1(11	, , , .	- (, -,			1-2.2(,, 1		,,				

NM8N DC Moulded C	Case Circuit Breaker	125					250							
Rated operating curre	ent In (A), 40 °C	16-20-25	5-32-40-	50-63-80	-100-125		125-1	60-180-20	0-225-25	0				
Electric characteristics	5													
Rated insulation volta		1000					1000							
	and voltage Uimp (kV)	8					8							
Rated operational vol	tageUe(V),DC	250 , 50	0 , 750	, 1000			250 ,	500 , 750), 1000					
Breaking capacity cod	le	В	С	S	Q	Н	В	С	S	Q	Н			
	1P	-	•		_	_	-	-	-	_	_			
Number of poles	2P	-	•	•	-	•	-	-		•	•			
Number of poles	3P	-	•	•	•	•	-	-	-	•	-			
	4P	-	•	•	-	•	•	•	-	-	•			
	DC250V 1P	25	36	50			25	36	50		_			
Rated ultimate short-circuit breaking	DC500V 2P in series	25	36	50	70	100	25	36	50	70	100			
capacity Icu(kA)	DC750V 3P in series	25	36	50	70	100	25	36	50	70	100			
	DC1000V 4P in series	25	36	50	70	100	25	36	50	70	100			
	DC250V 1P	25	36	50			25	36	50		_			
Rated service breaking capacity	DC500V 2P in series	25	36	50	70	100	25	36	50	70	100			
Ics(kA)	DC750V 3P in series	25	36	50	70	100	25	36	50	70	100			
	DC1000V 4P in series	25	36	50	70	100	25	36	50	70	100			
Standard		IEC/EN 6	0947-2											
Utilization category		А					A							
Ambient temperature	-40°C ~+	-70℃												
Safety of insulation		•					-							
Arcing distance Mechanical life		0						0						
(CO recycle)	Maintenance free	15000						15000						
Electrical life (CO recycle)	DC1000V,In	2000					1500							
Release units	'										,			
Distribution protection	тм	•					-							
Mounting and connection	ction	1												
	Front connection						-							
Fixed	Rear connection						•							
DI 11	Front connection	-					•							
Plug-in ¹⁾	Rear connection	•					•							
Draw-out ¹⁾	Front connection	_					-							
Draw-out	Rear connection	_					_							
DIN rail	Front connection	-					•							
Dimension														
D:	Width (1P/2P/3P/4P)	35/62/90	0/120	-			40/70,	/105/140						
Dimension (mm) $W \times H \times D$	Height	140					157							
	Depth	78.5					88.7							
Weight														
	1P	0.5					0.75							
Weight(kg)/Fixed	2P	0.83						1.3						
5 (5,,	3P	1.19					1.85							
	4P	1.55					2.5				2.5			

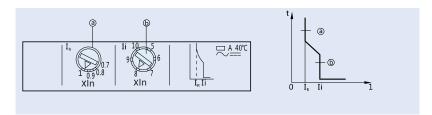
Note: 1) For 3/4 pole product only.

400					630					800					1600	
 250-3	15-350-	400		·	400-5	00				500-6	30-700-	800			800-1 1250-	.000- ·1600
															1230	1000
1000					1000					1250					1000	
12					12					12					8	
750 ,	1000				750 ,	1000					1000				750 , 1000	
В	С	S	Q	Н	В	С	S	Q	Н	В	С	S	Q	Н	В	С
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	_			_	†	_	_	_	_	_	_		_	_	<u> </u>	
	•	•	•		•		•		•	•	•	•		•	-	
 -	•	•	•		•	•	•	•	•	•	•	•	•	•	•	
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	_			_	†	_		_		1_			_	_	1_	
25	36	50	70	100	25	36	50	70	100	25	36	50	70	100	25	36
25	36	50	70	100	25	36	50	70	100	25	36	50	70	100	25	36
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	_		_	_	<u> </u>	_		_	_	_		_	_	_	_	
 25	36	50	70	100	25	36	50	70	100	25	36	50	70	100	25	36
25	36	50	70	100	25	36	50	70	100	25	36	50	70	100	25	36
IEC/EN	N 60947	-2			1					1					1	
Α					Α					А					Α	
	~+70°C				1					1					1	
-					-					-					-	
0					0					0					0	
15000					15000)				1000)				6000	
1500					1500					1000					1000	
-					•					-					•	
-					-					_					•	
-					•					-					-	
•					•					_					_	
-					•					-					-	
•					•					•					-	
-					•					•					_	
					-					-					-	
140/1	85				140/1	.85				195/2	260				210/2	280
255					255					300					286	
113					113					133					167	
					-										-	
					-					_					_	
5.2					5.5					10.3					13.5	
6.7					7					13.5					17.5	

NM8NL Residual Curren	t protection module	125	250	400	630					
Rated operating current		125	250	400	630					
Number of poles	211 (1.1)/ 10 0	3P. 4P	3P. 4P	3P. 4P	3P. 4P					
Electric characteristics					12.					
Rated insulation voltage	e Ui (V)	1000	1000	1000	1000					
Rated impulse withstand	d voltage Uimp (kV)	88		12	12					
Rated operational voltage	geUe(V),AC 50/60Hz	380/400/415、440	380/400/415、440	380/400/415、440	380/400/415、440					
	TM	16-20-25-32-40-50- 63-80-100-125	125-160-180-200-225- 250	250-315-350-400A	400-500A					
	EN	_	32-63-100-160-250	250-400	400-630					
Rated current (A)	EM	_	32-63-100-160-250	250-400	400-630					
of circuit breaker	М	16-20-25-32-40-50- 63-80-100-125	125-160-180-200-225- 250	250-315-350-400A	400-500A					
	ENM	_	32-63-100-160-250	250-400	400-630					
	EMM	_	32-63-100-160-250	250-400	400-630					
	RCD1 (Four-step adjusable)	0.03-0.1-0.3-1	0.03-0.1-0.3-1	0.03-0.1-0.3-1	0.03-0.1-0.3-1					
Rated residual	RCD2 (Four-step adjusable)	0.05-0.2-0.5-2	0.05-0.2-0.5-2							
operating current I∆n(A)	RCD3 (Four-step adjusable)			0.05-0.2-0.5-1	0.05-0.2-0.5-1					
	RCD4 (Four-step adjusable)			0.1-0.3-1-2	0.1-0.3-1-2					
Rated residual non-ope IΔno(A)	rating current	0.5I∆n	0.5I∆n	0.5I∆n	0.5I∆n					
Limit non-actuating tim		Δt : 0-60-200-500	Δt: 0-60-200-500							
Maximum breaking time (ms)	Total breaking time (adjustable)	100-300-500-1000	100-300-500-1000	100-300-500-1000	100-300-500-1000					
Rated residual making a IΔm(kA)	ind breaking capacity	0.25lcu	0.25lcu	0.25lcu	0.25lcu					
Leakage alarm non-trip	ping function									
Standard		IEC/EN 60947-2								
Residual current type		A/AC	A/AC	A/AC	A/AC					
Safety of insulation			•	•	•					
Ambient temperature		-25°C ~+70°C								
Arcing distance		0000								
Dimension										
Dimension with circuit	Width (3P/4P)	90/120	105/140	140/185	140/185					
breaker (mm) W×H×D	Height	205	232	355	355					
	Depth	78.5	88	113	113					
Weight										
Weight of residual current protection	3P	0.43	0.84	1.98	1.98					
module (kg)	4P	0.51	1.08	2.69	2.69					

Note: $^{1)}$ When the residual operating current is set to 0.03A, the limit non-actuating time must be set to 0.

NM8NSD Switch D	isconnector	125			250			400		800		1600	
NM8NSD Switch D Ith(A),40°C	isconnector	125			250			400		800		1600	
Number of poles		2P	3P	4P	2P	3P	4P	3P	4P	3P	4P	3P	4P
Rated operational current le(A)		125			250			400		800		800-10 1600	00-1250-
Rated operational	AC (50/60Hz)	690			690			690		690		415/69	0
voltage Ue(V)	DC	500	750	1000	500	750	1000	750	1000	750	1000	750	1500
Rated insulation vo	oltage Ui (V)	1000			1000			1000		1250		AC: 10 DC: 15	
Rated impulse with voltage Uimp (kV)	stand	88						12		12		12	
Rated short-circuit lcm(kA)	making capacity	3.2(AC)/2(DC)		5(AC)/3	3.2(DC)		8(AC)/	5(DC)	14		40(AC)	/19.2(DC)
Rated short-time	1s	2			3.2			5		8/10		20(AC)	/19.2(DC)
withstand current lcw(kA)	3s	2			3.2			5		8/10		20	
Standard		IEC/EN	60947-	-3 , GB/T	14048.3	3		1		1			
Utilization category	/	AC-22/	A/AC-23 A/DC-23	ВА	AC-22	A/AC-23/ A/DC-23			A/AC-23A A/DC-23A		A/AC-23A A/DC-23A		A/AC-23A A/DC-22B
Safety of insulation	l	-	·		-			-		-		-	
Ambient temperatu	ure	-40°C	~+70°C					•					
Arcing distance		00						000					
Mechanical life (CO recycle)	Maintenance free	15000			15000			15000		10000		6000	
EL	AC415V,In	8000			6000			4000		2000		1000	
Electrical life (CO recycle)	AC690V,In	2000			1500			1500		1000		1000	
(co recycle)	DC1000V,In	2000			1500			1500		1000		1000	
Mounting and con	nection												
Fixed	Front connection	-			-			-		_		-	
rixed	Rear connection	-			-			-		-		-	
Plug-in ¹⁾	Front connection	-			-			-					
Plug-III	Rear connection	-			-			-					
Draw-out ¹⁾	Front connection							-		-		_	
Diaw-Out	Rear connection							-		•	_	<u> </u>	
DIN rail	Front connection	-			-				-				
Dimension													
Dimension(mm)	Width(2P/3P/4P)	62/90/	120		70/105	/140		140/18	35	195/26	0	210/28	0
Dimension(mm) W×H×D	Height	140			157			255		300		286	
	Depth	78.5			88			113		133		167 (1	.95) ²⁾
Weight													
	2P	0.81			1.1				-				
Weight(kg)/Fixed	3P	1.05			1.75			5		9.5		13(15.5	b) ²⁾
	4P	1.5			2.4			5.5		12.5		17(19.5	5)2)


Note: $^{1)}$ For 3/4 pole product only ; $^{2)}$ The data in "()" is for motor type

5 Release

5.1 Protection for power distribution

5.1.1 Thermo-magnetic type release TM
Thermo-magnetic release of NM8N-125, 250, 400, 630, 800 and 1600 breakers can be set to meet protection requirements

Thermo-magnetic release TM	125		250			400	630	800	1600
Number of poles	1P	2P/3P 4P	1P	2P/3P/	/4P	3P/4P	3P/4P	3P/4P	3P/4P
Rated curent	16/20/25 32/40/50 63/80/100)/125	125/160 180/200 225/250	125	180 200/225 250	250/315 350/400	400/500	500/630 700/800	800/1000 1250/1600
Over-load protecti	on					,		,	
Setting current (A) $I_r=I_n x$	1.0 Non- adjustable	0.7- 0.8- 0.9-1.0	1.0 Non- adjustable	0.7-0.8	3-0.9-1.0				0.8-0.9-1.0
Short-circuit instar	ntaneous p	rotectio	n						'
Setting current (A) $I_i=I_n x$	10		10	7-8- 9-10- 11-12		5-6-7-8-9-	-10		
Accuracy	±20%								
N-pole protection									
Setting current (A) $I_{iN}=I_n x$	/	10	/	The sa	me with t	he other t	hree-pha	se poles.	
Accuracy	±20%								

5.1.2 Basic electronic type release for power distribution EN EN electronic trip unit has three-stage protection of overload, short circuit short

time-delay and short circuit instantaneous protection.

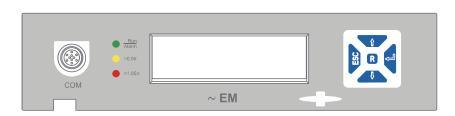
Electronic type EN	l e	250	400	630	800	1600					
Over-load	Setting current $I_r = I_n \times$	0.4-0.5-0.6-0.7-0.8-0.9-0.95-1.0									
long-time delay protection	6I _r Tripping time Tr(s)	3-6-12-18, Accuracy ±10%									
Short circuit	Setting current $I_{sd}=I_r \times$		1.5-2-3-4-6-	8-10, OFF, Ac	curacy ±15%	6					
short-time delay protection	Tripping time T _{sd} (s)	0.1-0.2-0.3	0.1-0.2-0.3-0.4 , Accuracy ±20% or ±40ms(higher value will be selected)								
Short circuit	Setting current $I_i = I_n \times$	2-3-4-6-8-10-12, OFF, Accuracy ±15%									
instantaneous protection	Max. tripping time (ms)	60									
Neutral line	Setting current	I _{rN} :	=(0.5,1)xI _n , O I _{iN} =(2	FF; I _{sdN} =(1.5- -3-4-6-8-10-))I _{rN}					
protection	Tripping time (s)	The same with the other three-phase poles.									

• Overload protection and tripping time setting

—The current value Ir can be adjusted according to the user's needs. The tripping time Tr is at the status of 6Ir.

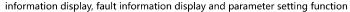
Status of bir.

Short circuit short-time delay protection and trip time setting


—The current value Isd can be adjusted according to the user's needs. Tripping time Tsd is the shortcircuit short time-delay tripping time, which can be adjusted according to user needs.

Short circuit instantaneous protection characteristics setting

—The current value Ii

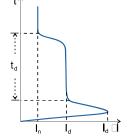

—The current value li can be adjusted according to the user's needs.

• Neutral line protection feature setting
The four-pole circuit breaker N-pole protection current value can be adjusted according to user needs. The N pole tripping time is the same with the other three-phase poles.
5-1.3 Standard electronic type release for power distribution EM
EM release has four-stage protection of overload, short circuit short-time delay, short circuit instantaneous protection and earth fault, with real-time current display, protection parameter

Electronic type E	M	250	400	630	800	1600				
Over-load	Setting current $I_r=I_n \times$	0.4~1.0, Stepping1A								
long-time delay protection	6I _r Tripping time T _r (s)	3~18, 1s, Accuracy ±10%								
Short circuit	Setting current $I_{sd} = I_r \times$	1.	5~10, Steppi	ng1A, OFF, A	Accuracy ±15	%				
short- time delay protection	Tripping time T _{sd} (s)	0.1-0.2-0	0.3-0.4, Accur w	acy ±20% o		ner value				
Short circuit	Setting current $I_i = I_n \times$	1.5~12, Stepping1A, OFF, Accuracy ±15%								
instantaneous protection	Max. tripping time (ms)	60								
Earth fault	Setting current $I_g=I_n \times$	0.4-0	0.5-0.6-0.7-0.8	8-0.9-1.0, OF	F, Accuracy ±	±15%				
protection	Tripping time (s)	0.1-0.2-0.3-0.4,Accuracy ±15%								
Neutral line	Setting current	I_{rN} =(0.5,1)x I_n ; I_{sdN} =(1.5~10) I_{rN} ; I_{iN} =(1.5~12) I_{rN} , able to turn OFF								
protection	Tripping time (s)	The same with the other three-phase poles.								

- Current setting value Ir , the user can adjust the range according to the \uparrow and \downarrow buttons on the panel, the range is (0.4~1.0) In, and the tripping time Tr is at the status of 6Ir , which can be adjusted

according to user needs.


- Short circuit short-time delay protection and tripping time setting
- —The current setting value Isd can be adjusted according to the user's needs, and the "OFF" indicates function can be turned off. Tripping time Tsd is the short-circuit short-time delay tripping time, which can be adjusted according to user needs.
- Short circuit instantaneous protection characteristics setting
- —The current setting value li

can be adjusted according to the user's needs, and the "OFF"

indicates function can be turned off.

- Neutral line protection feature setting
- —Neutral line protection of the four-pole circuit breaker (current setting value InN), the setting range is 0.5In , 1I n or OFF, which can be adjusted according to the user's needs. The "OFF" position indicates that the N pole has no protection function.
- Earth fault protection

Earth fault Ig can be adjusted according to user needs, where the "OFF" means the function can be turned off.

Motor starting Current curve

5.2 Protection for motor

5.2.1 Motor starting characteristics

At present, most of the motors use three-phase asynchronous induction motors, and a large part of them use the direct start mode, namely, the electric energy does not take artificial restriction measures, and directly feeds to start the motor, which is also called full-pressure start. When the asynchronous motor is directly started, a high starting current of 4 to 7 times of the rated current occurs. The reason why the asynchronous motor has a large starting current is that the motor has certain inertia, and the rotor speed cannot be immediately changed to the rated speed after starting. At this time, the relative rotational speed of the rotating magnetic field of the stator (synchronous speed of the motor, slightly higher than the rated speed) is large. The rotor winding cuts the stator magnetic field at a large speed to generate a large current; at the same time, the magnetic field generated by the large current of the rotor in turn induces the stator winding, so that the current also rapidly increases.

Startup parameter

Rated current (In): current value of the motor under rated operation

Starting current (Id): The current when the motor starts, its magnitude varies with different conditions, the average value is 7.2×In

Start peak current (Id

,): Transient current during the first two half-waves after the motor is powered on, typically 14 × In

Start-up time (td): generally 0.5~20s, which refers to the time when the motor has starting current Direct startup impact on the protection device

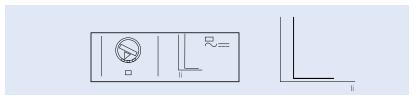
For circuit breakers with magnetic protection, if the conventional current of the magnetic trip unit is set incorrectly, the circuit breaker will mistake the start current of the motor for short-circuit current, causing the circuit breaker to malfunction. For the independent thermal relay, the heat generated by the large starting current during the motor starting phase will also cause the relay to trip. For the contactor, if the motor needs electric or regenerative braking, it needs to be able to be broken during the motor starting phase. It generally needs to derate, in order to avoid the malfunction of the protection device caused by the start current:

The inverse time characteristic curve of the independent thermal relay is required to be completely above the starting current.

The short-circuit current trip setting of the circuit breaker with magnetic protection should be greater than the peak starting current of the motor.

5.2.2 Protection solution

The NM8N Series offers start-up, control and protection solutions for two three-phase asynchronous motors:


Three-component solution

Electromagnetic protection circuit breaker + contactor + thermal relay

Among them, the electromagnetic protection circuit breaker is used for short circuit protection, the contactor is used for motor operation, and the thermal relay is used for overload, phase loss and phase unbalance protection.

1) Magnetic release M

The electromagnetic protection circuit breaker has a current range of 125~800A, an adjustable range of 9~14In and an accuracy of 20%. It is especially suitable for use in the classic threecomponent protection solution.

Magnetic M	125	250	400	630	800
Pole	3P/4P	3P/4P	3P/4P	3P/4P	3P/4P
Short circuit instantaneous pro	tection				
Setting current (A) $I_i=I_n x$	12	9-10-11-12-13-1	L4		
Accuracy	±20%				
N pole protection					
Setting current (A) $I_{iN}=I_n x$	12	The same with t	he other three-pl	nase poles.I _i	
Accuracy	±20%				

Two-component solution

Integrated protection electronic circuit breaker + contactor

In the two-component solution, there is no need to use the thermal relay, and the integrated protection electronic circuit breaker has the functions of overload, phase loss, phase unbalance protection and short circuit protection. The integrated protection electronic circuit breaker not only has high tripping precision, but also has reliable operation. The two-component solution consisting of contactors and the installation time can be saved without being affected by the ambient temperature.

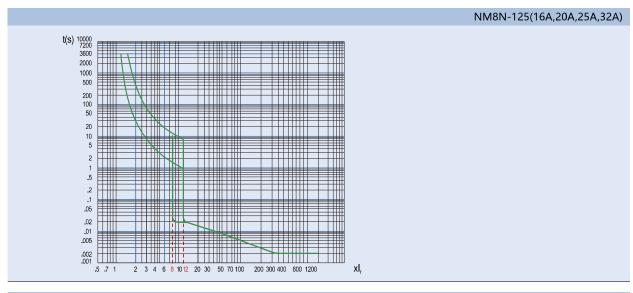
2) Integrated protection: Basic electronic type release for motor protection ENM

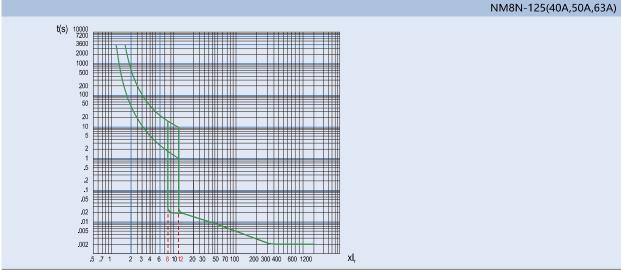
The ENM electronic trip unit allows for tighter tolerance trip times, as detailed in the table below.

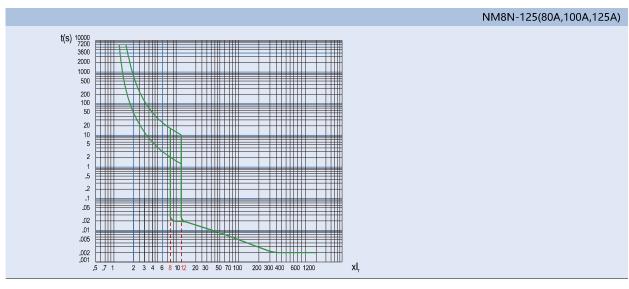
Electronic type ENM		250	400	630	800		
Overload long-time delay protection	Setting current $I_r=I_n \times$	0.4-0.5-0.6-0.7-0.8-0.9-1.0, OFF					
	7.2I _r Tripping time T _r (s)	4、8、16, Accuracy ±10%	48、16、24, Accuracy ±10%				
	Tripping level	5、10、20	5、10、20、30				
Short circuit short-time delay protection	Setting current $I_{sd}=I_r \times$	5-6-8-9-10-11-12, OFF, Accuracy ±15%					
	Tripping time T_{sd} (ms)	100,Accuracy ±40					
Short circuit instantaneous protection	Setting current $I_i=I_n \times$	151)					
	Max. tripping time (ms)	60					
Phase unbalance/Phase failure unbal		30%-40%-50%-60%-70%-80%-90% (Phase failure)-OFF					
Max. trip time of phase imbalance (s)		4-6-8-10,Accuracy ±10%					
Tripping time of phase failure (s)		0.25,Accuracy ±20%					
Neutral line protection	Setting current	$I_{\text{rN}} = (0.5, 1) \times In, I_{\text{scin}} = (5-6-8-9-10-11-12) I_{\text{rN}}$ $I_{\text{IN}} = 15 I_{\text{rN}}$ OFF					
	Tripping time	The same with the other three-phase poles					

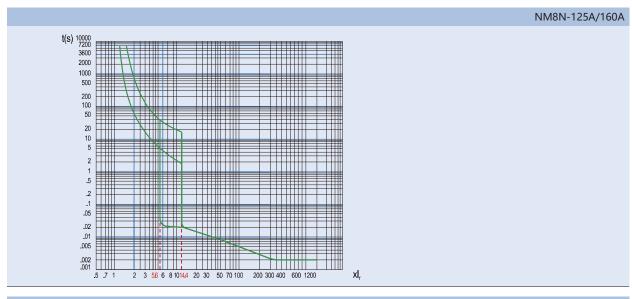
Note: 1) Setting current Isd < li (within tolerance).

3) Integrated protection: Standard electronic type release for motor protection EMM

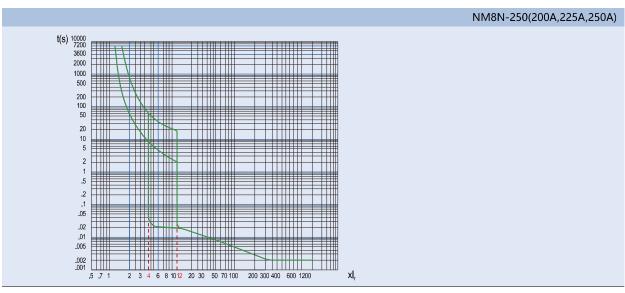

The EMM electronic release not only has the protection function of the ENM release, but also adds ground fault protection and stall protection. Moreover, it can also display real-time current, display protection parameter information, display fault information, and have parameter setting function.

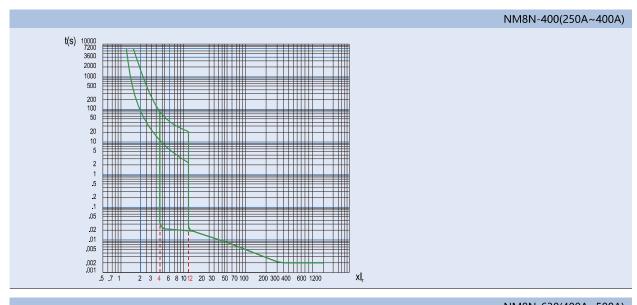

Electronic type EMM		250	400	630	800		
Overload long-time delay protection	Protection current $I_r=I_n \times$	0.4~1.0 , Stepping1A, OFF					
	7.2I _r Tripping time T _r (s)	4、8、16, Accuracy±10% 4、8、16、24, Accuracy ±10%					
	Tripping level	5、10、20	5、10、20、30				
Short circuit short-time delay protection	Protection current $I_{sd}=I_r \times$	4~12, Stepping1A, OFF, Accuracy ±15%					
	Tripping time T _{sd} (ms)	100, Accuracy ±40					
Short circuit instantaneous protection	Protection current $I_i=I_n \times$	151)					
	Max. tripping time(ms)	60					
Earth fault protection	Protection current $I_g = I_n \times$	0.4-0.5-0.6-0.7-0.8-0.9-1.0 , OFF, Accuracy ±15%					
	Tripping time (s)	0.1-0.2-0.3-0.4, Accuracy ±20% or 40ms(higher value will be selected)					
Phase unbalance/Phase failure I _{unbal}		30%-40%-50%-60%-70%-80%-90%(Phase failure)-OFF					
Max. trip time of phase imbalance (s)		4-6-8-10, Accuracy ±10%					
Tripping time of phase failure (s)		0.25, Accuracy ±20%					
Locked-rotor current I_{jam}		$(3\sim10)I_{_{\mathrm{f}}}$, Stepping1A, OFF(Defalut), Accuracy $\pm15\%$					
Tripping timeT _{jam} (s)		1~30, Step size1s, Defalut 5, Accuracy ±10%					
Neutral line	Setting current	I_{rN} =(0.5,1)x I_{rN} , OFF; I_{sdN} =(4~12) I_{rN} ; I_{iN} =15 I_{rN} , OFF					
protection	Tripping time	The same with the other three-phase poles.					
Note: 1) Setting current L < I(within tolerance)							

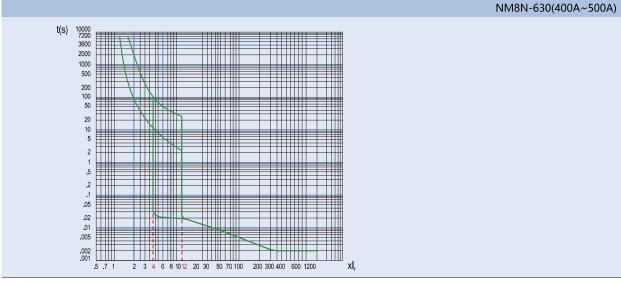

Note: 1) Setting current I_{sd}<I_i(within tolerance).

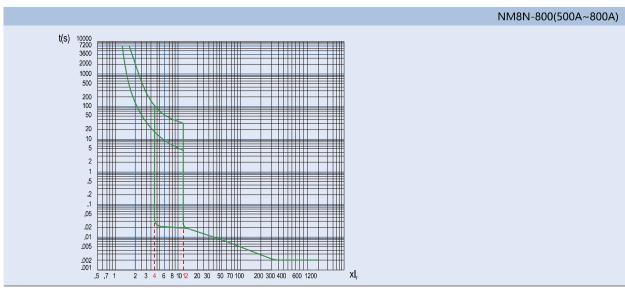

6 Tripping curve

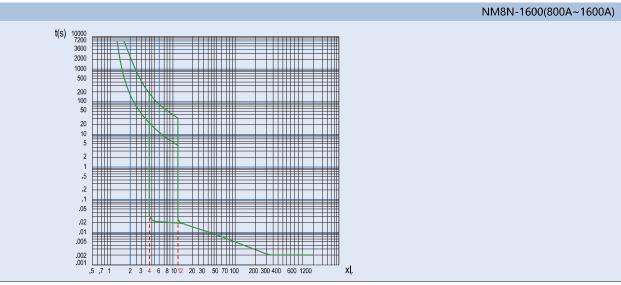
6.1 Thermal-magnetic type for power distribution



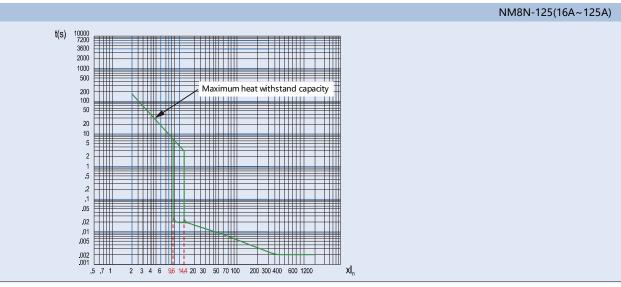


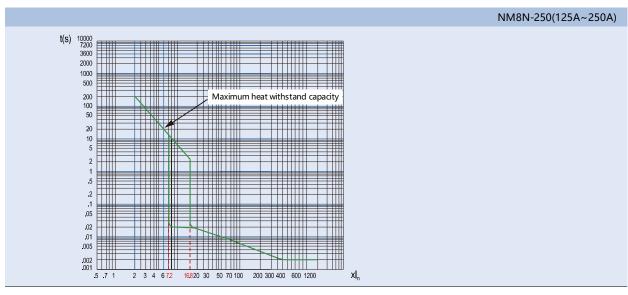


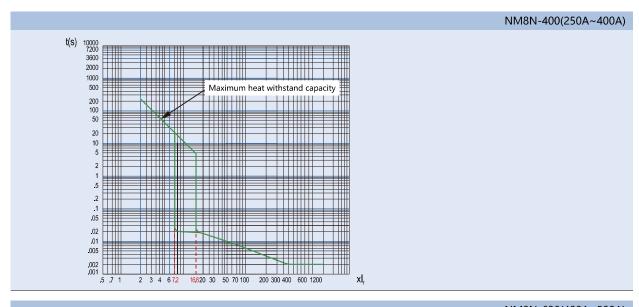


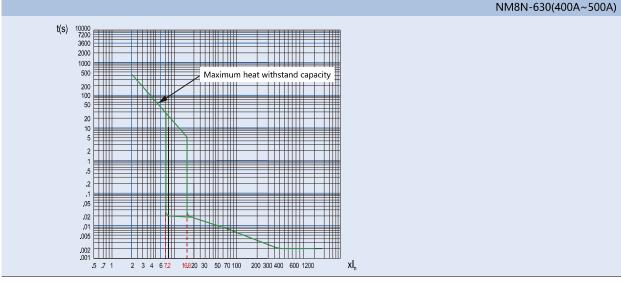


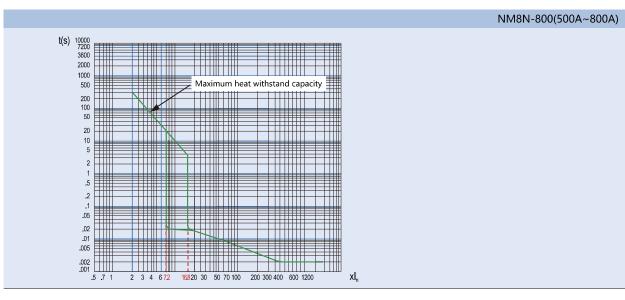
B

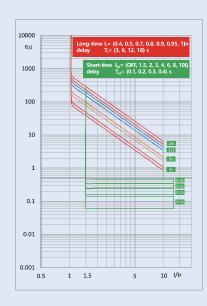


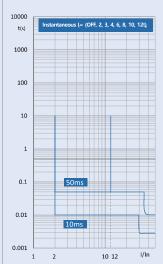


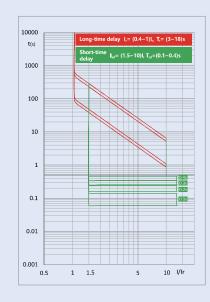


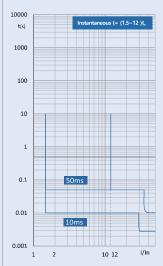


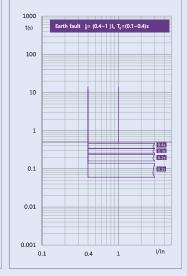

6.2 Magnetic type for motor protection

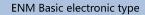




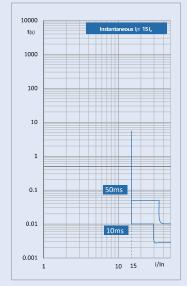

6.3 Electronic type for power distribution


EN Basic electronic type

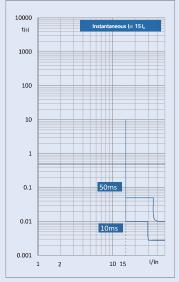


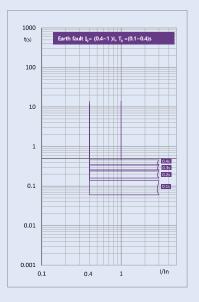

EM Standard electronic type



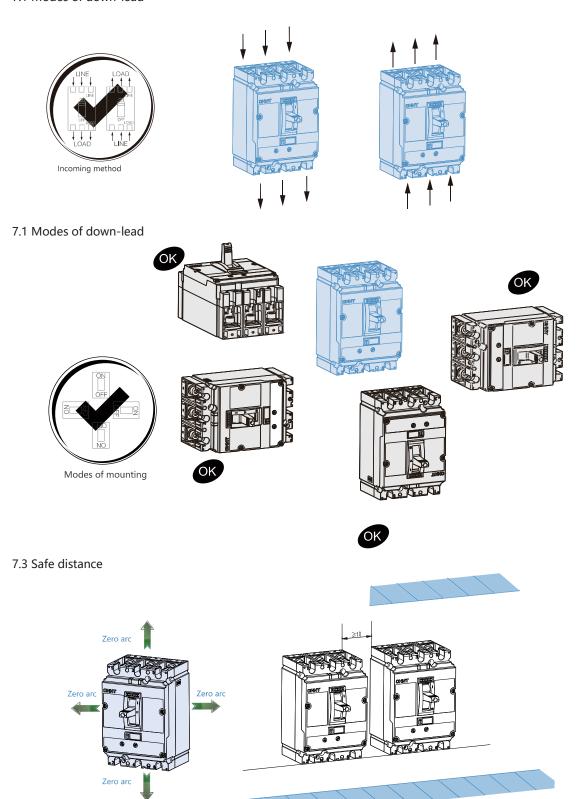


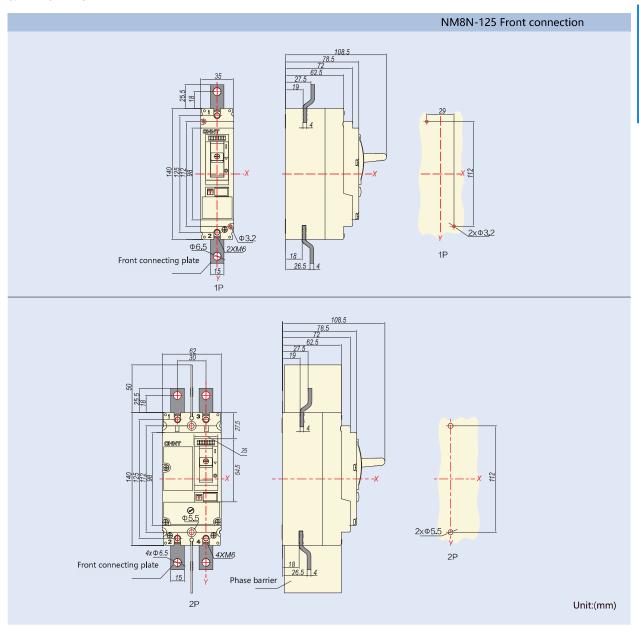
6.4 Electronic type for motor protection

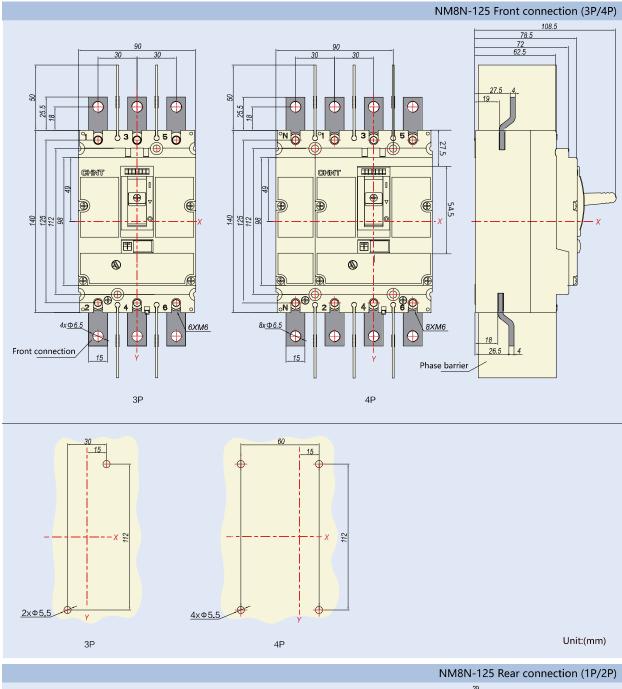


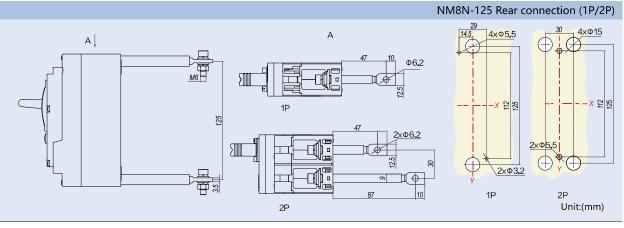


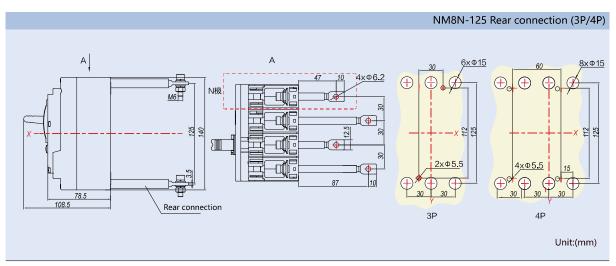
EMM Standard electronic type

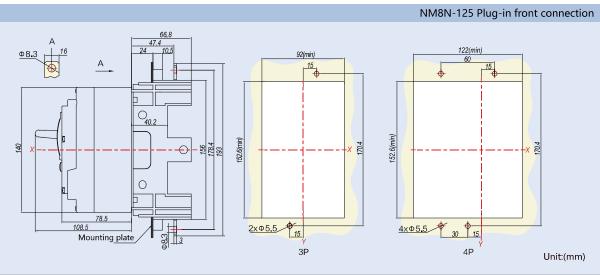


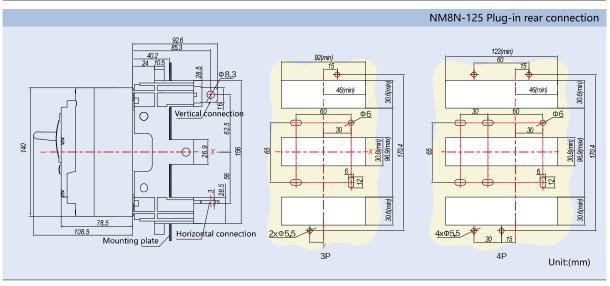

7 Mounting of circuit breaker

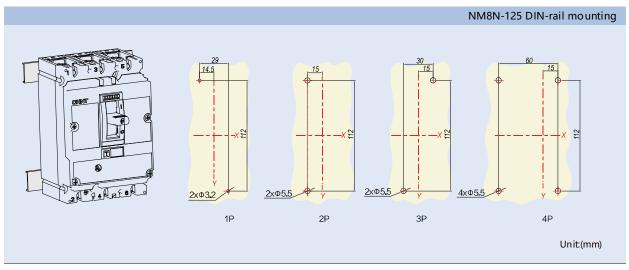

7.1 Modes of down-lead

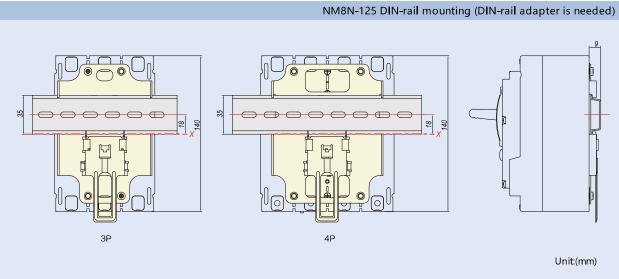


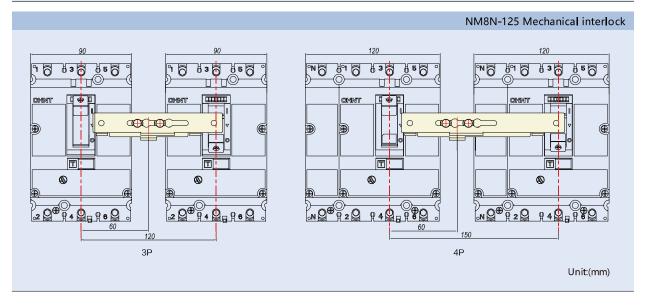

8 Overall and Mounting Dimensions

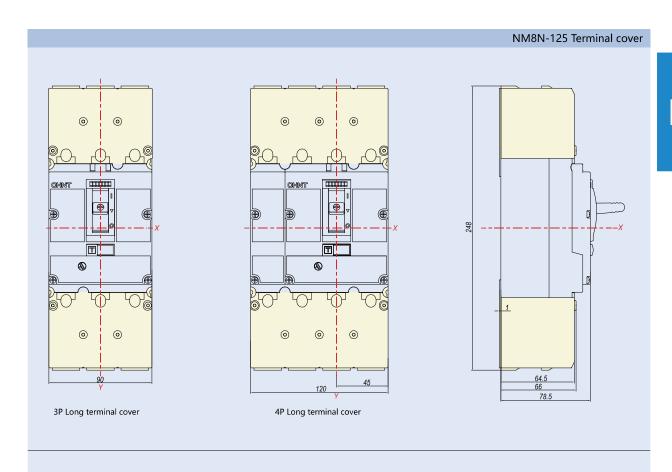

8.1 NM8N-125

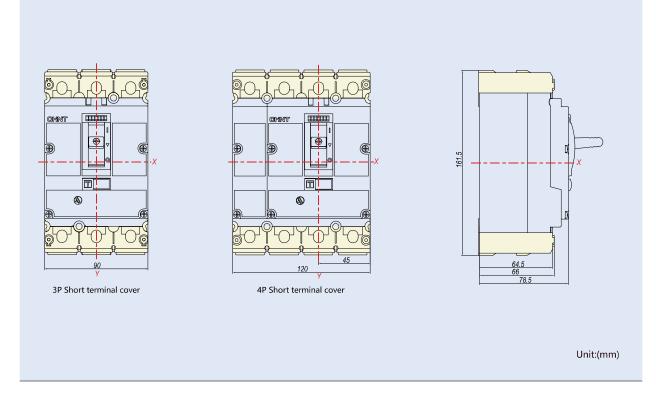


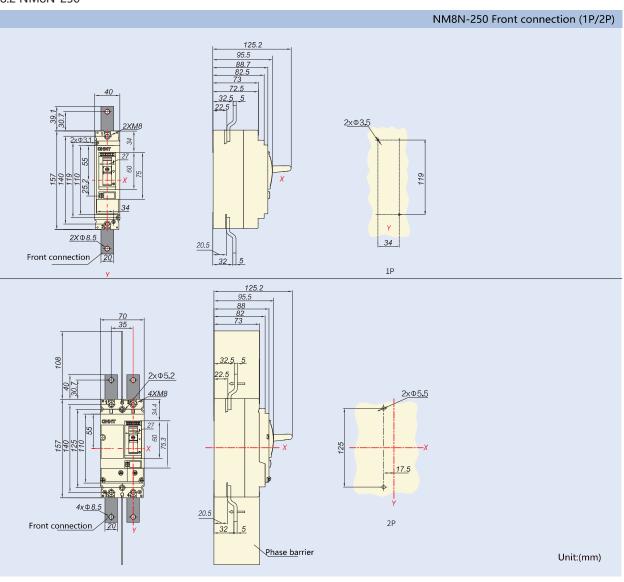


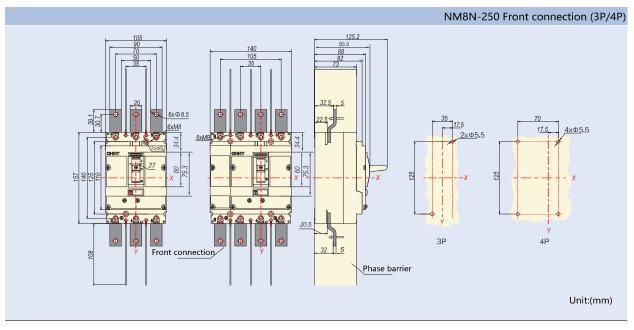


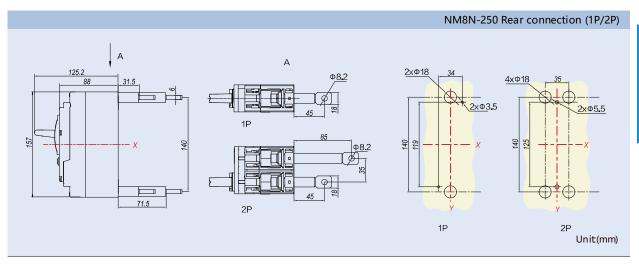


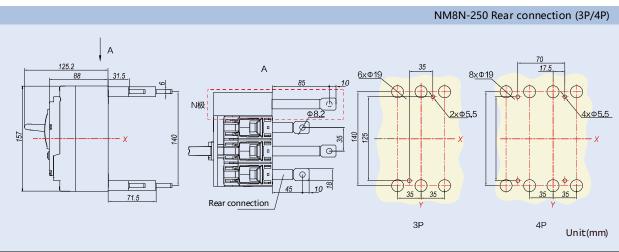


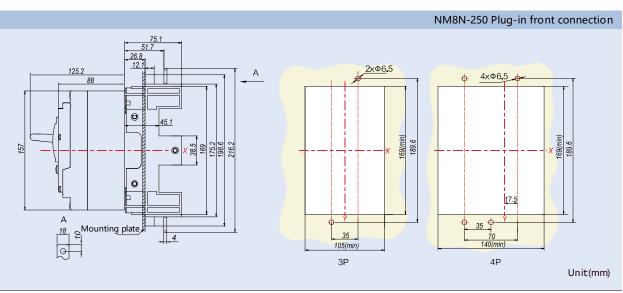


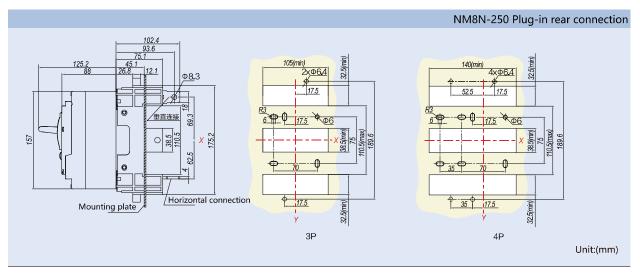


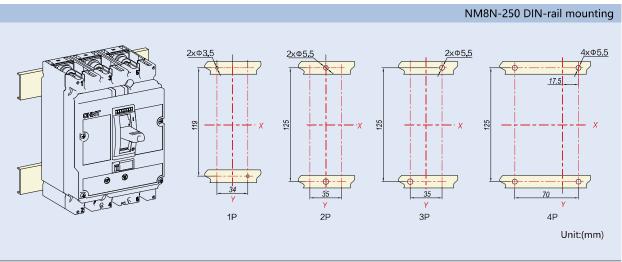


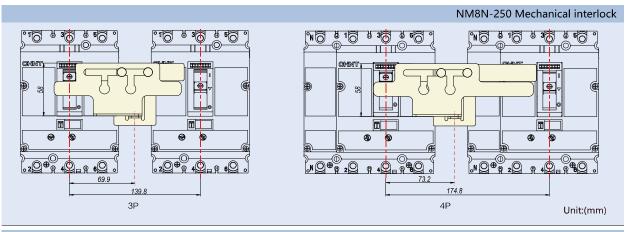


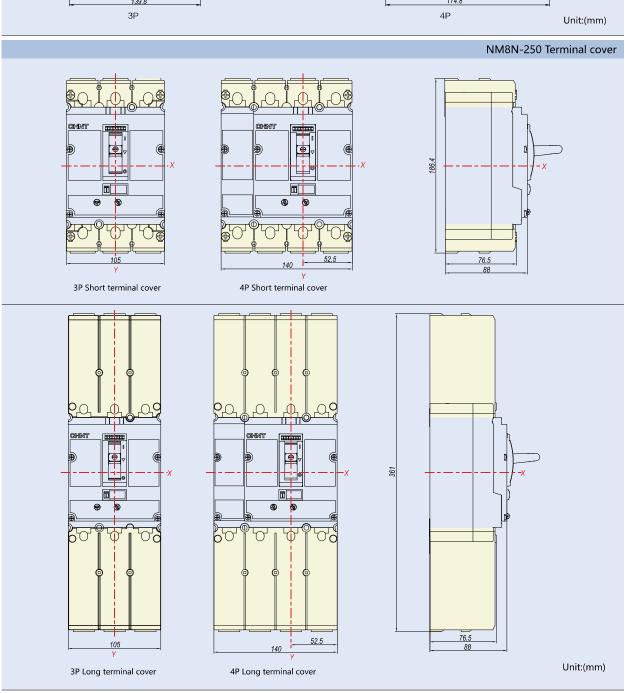


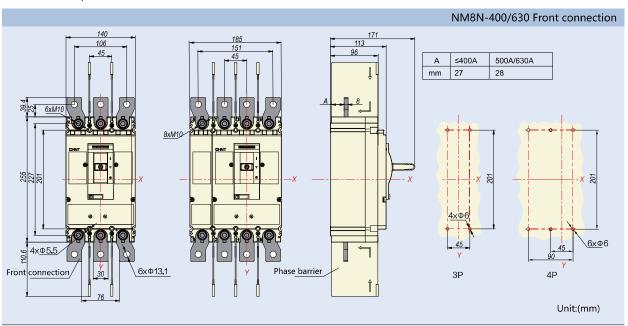

8.2 NM8N-250

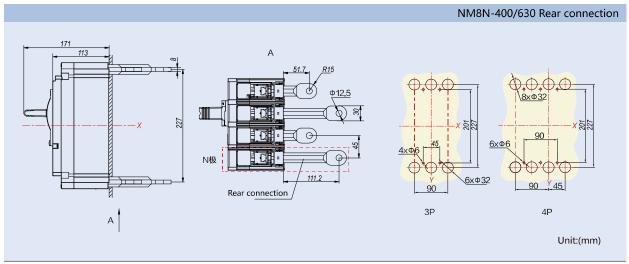


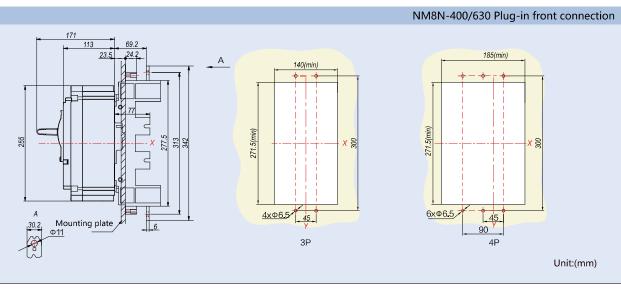


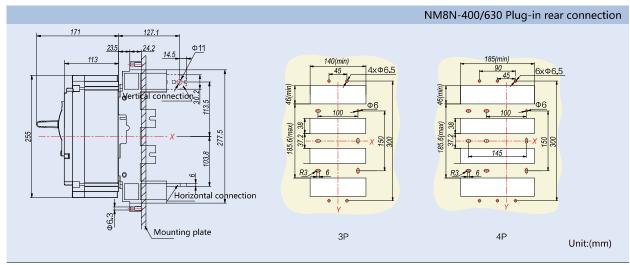


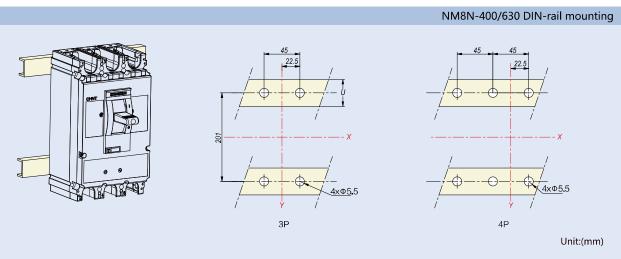


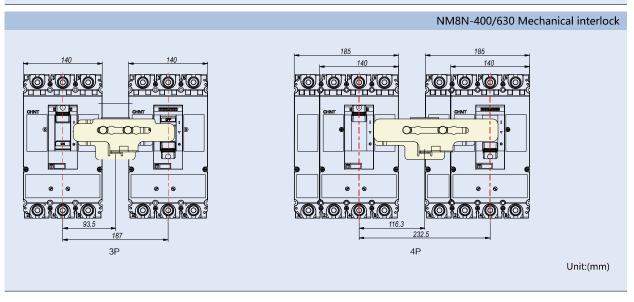


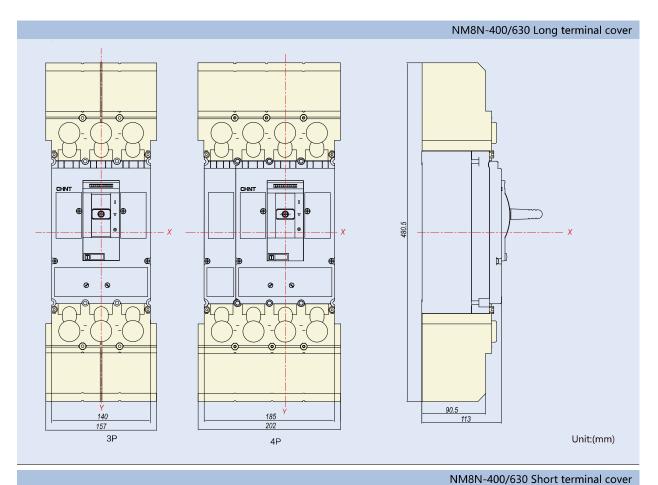


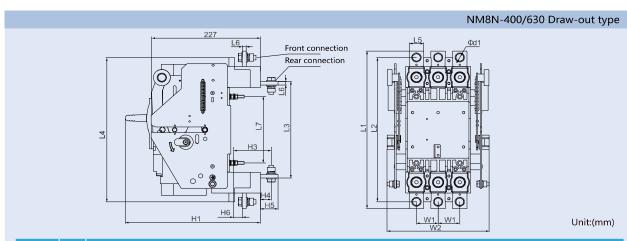


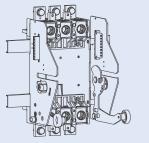


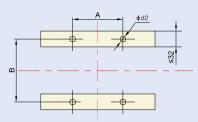

8.3 NM8N-400/630



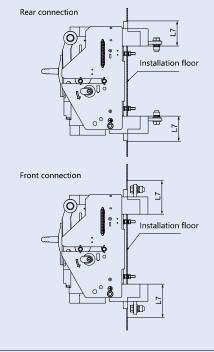


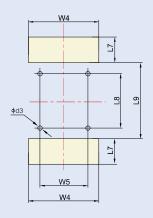





NMAN-40U/osu short terminal cover

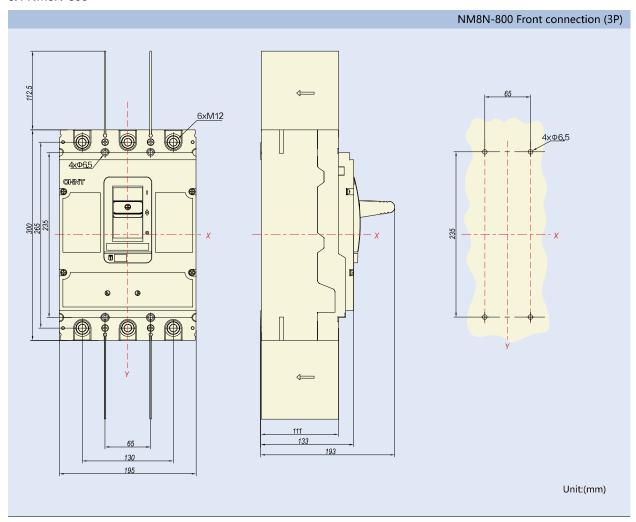
Current	Pole	Dimen	sion													
Current	Pole	L1	L2	L3	L4	L5	L6	L7	H1	НЗ	H4	H5	H6	W1	W2	Фd1
n≤400A	3P	342	313	207	312	30	6	143	280	77	21	35.5	17.5	45	214	11
	4P	342	313	207	312	30	6	143	280	77	21	35.5	17.5	45	259	11
n>400A	3P	342.5	314.5	210.5	313.5	30	8	143	280	77.5	21.5	35.5	17.5	45	214	11
11/400A	4P	342.5	314.5	210.5	313.5	30	8	143	280	77.5	21.5	35.5	17.5	45	259	11

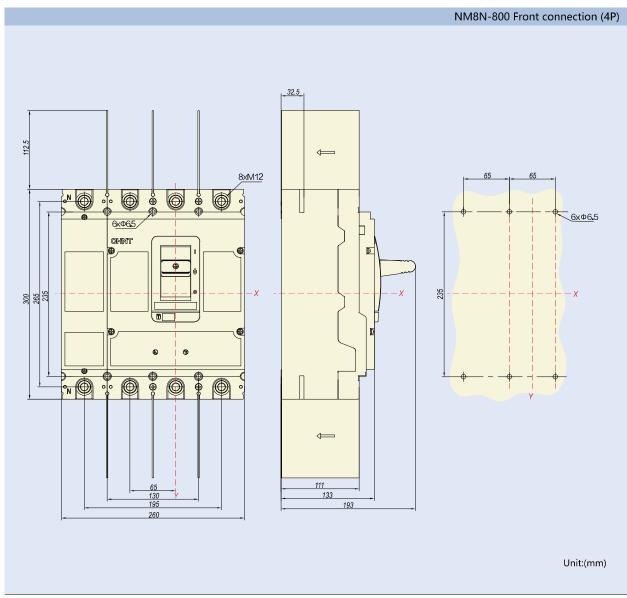

DIN-rail mounting

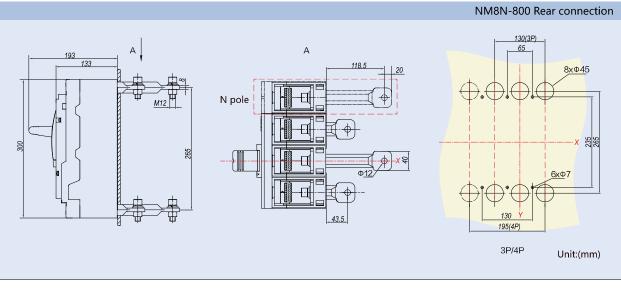


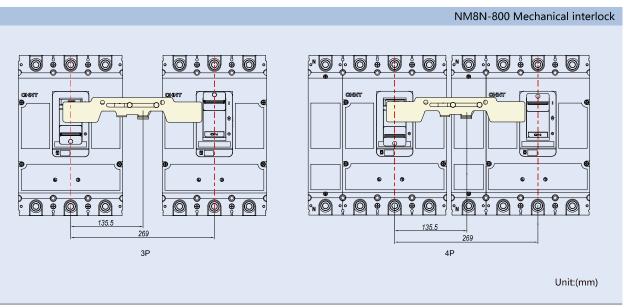
S-1-	Installa	Installation dimension							
Pole	Α	В	ension Φd2 6.5 6.5						
3P	90	143	6.5						
1P	135	143	6.5						

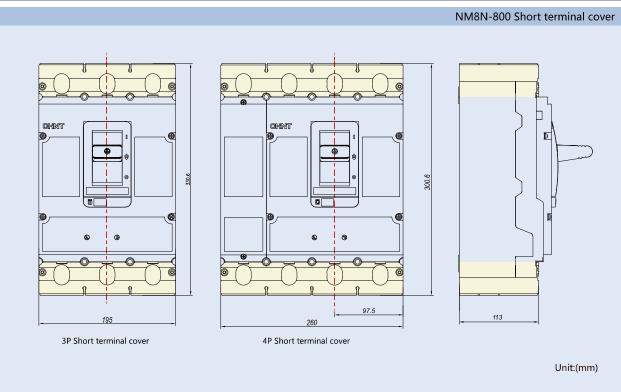
DIN-rail mounting

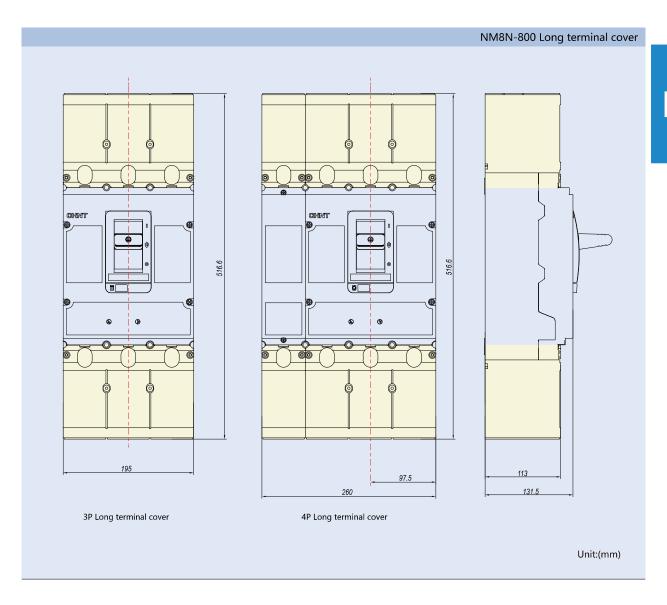


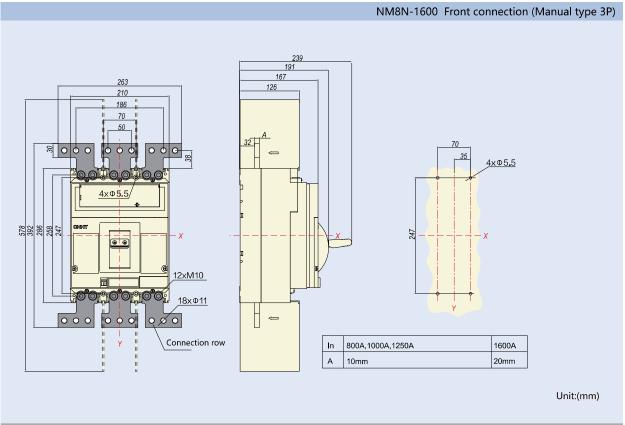


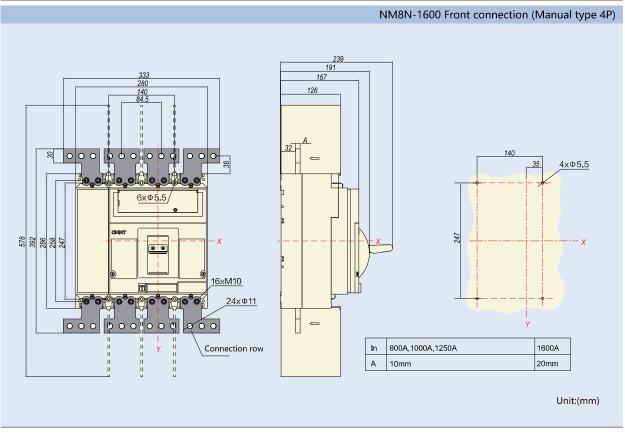

Current	- 1	nstallatic	n dimensi	on of re	ar plate co	onnectio	on
Current	L8	W5	L9	L7	W4	Фd3	Pole
In≤400A	143	90	181	70	138	7	3P
III≥400A	143	135	181	70	182	7	4P
In>400A	144.5	90	182.5	70	138	7	3P
111/400A	144.5	135	182.5	70	182	7	4P

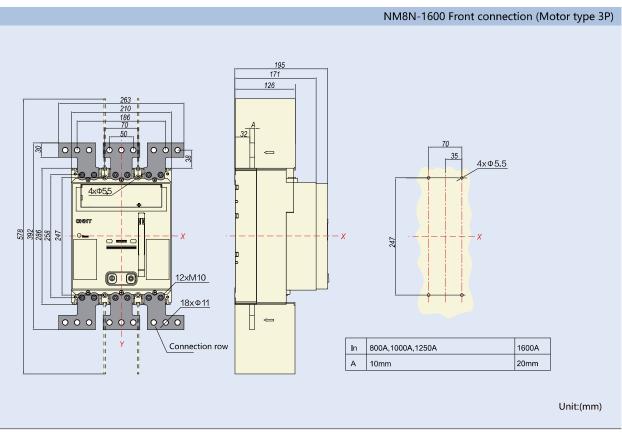

L7=90 when it is front connection, the rest of dimensions are the same with rear connection

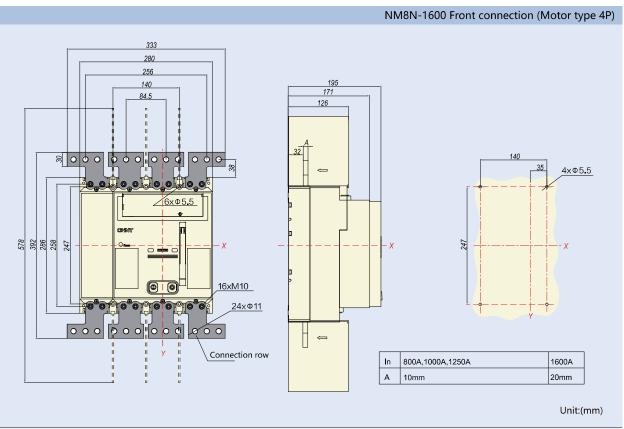

8.4 NM8N-800



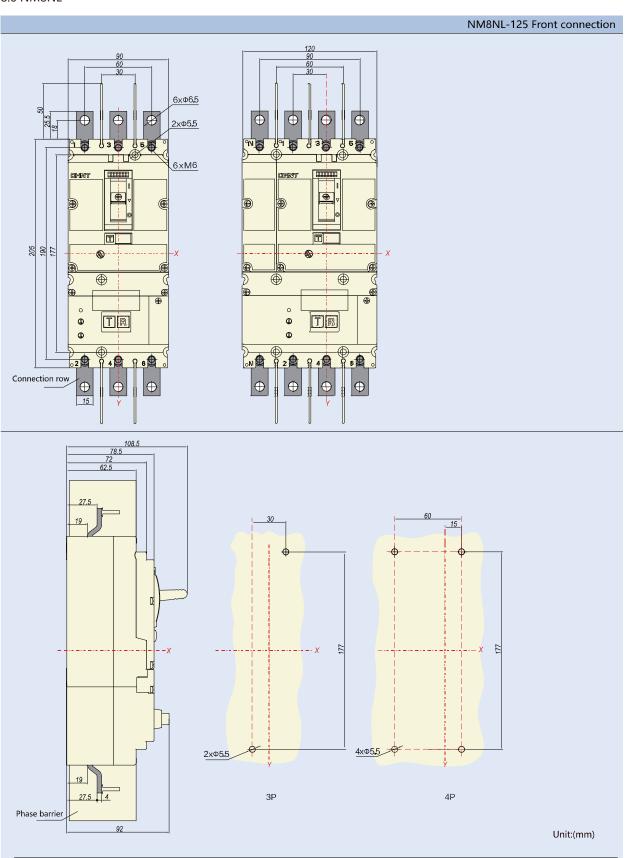


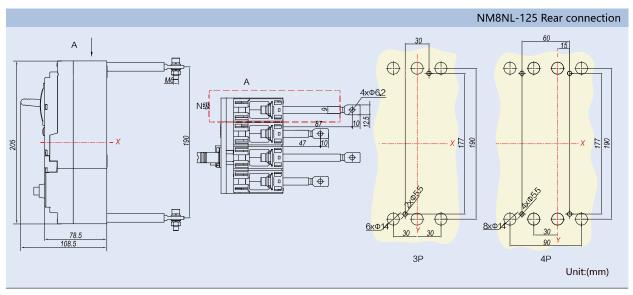


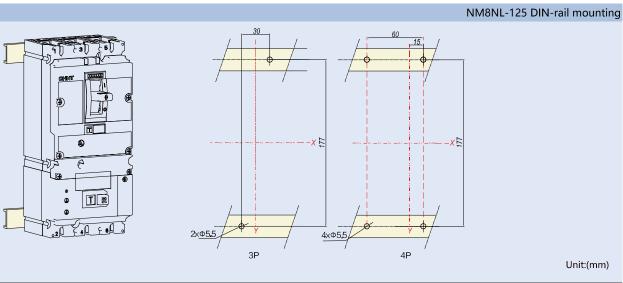


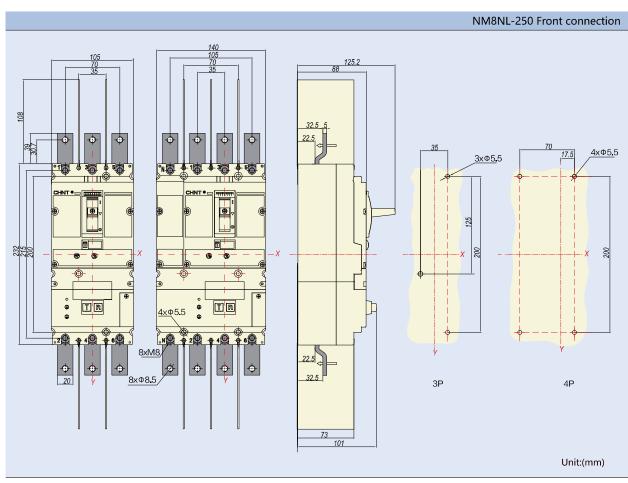


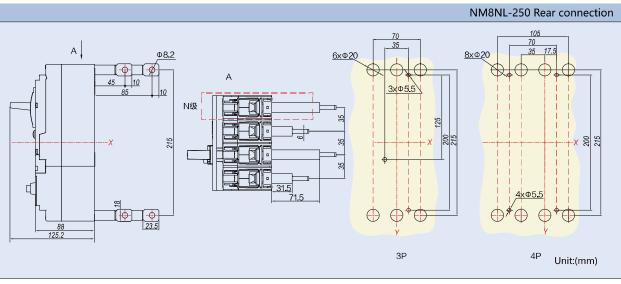
8.5 NM8N-1600

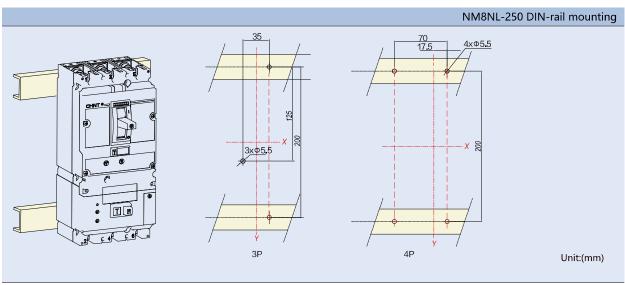


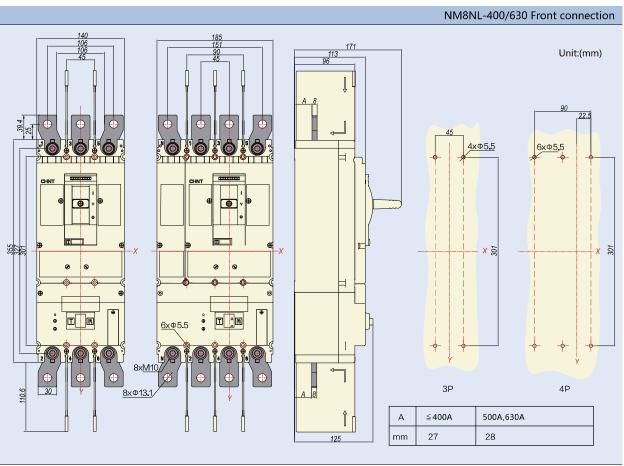


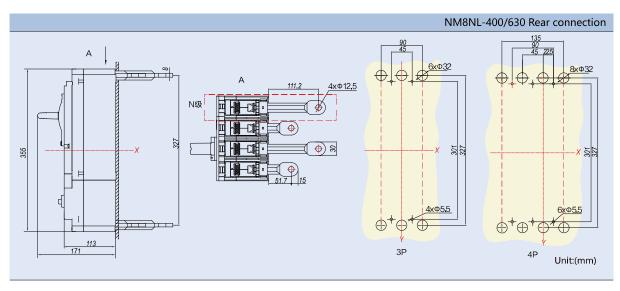


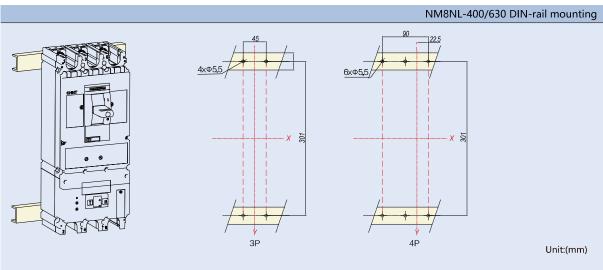


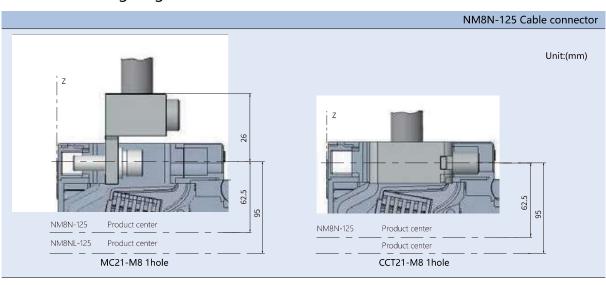

8.6 NM8NL

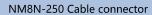


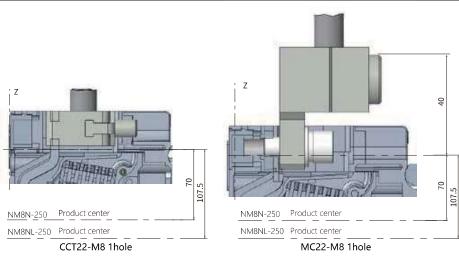


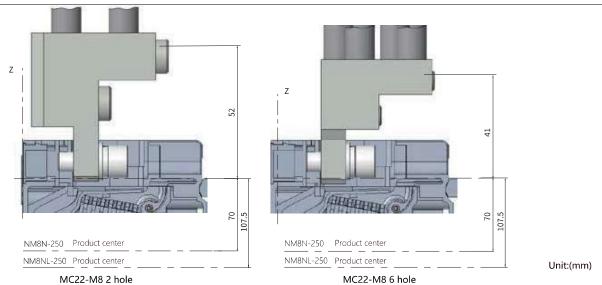






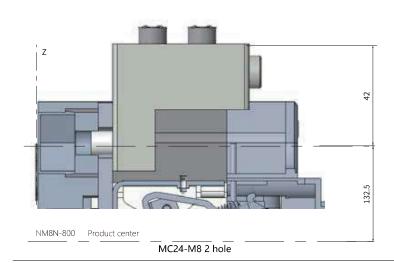




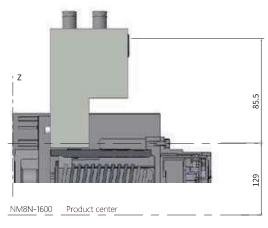


8.7 NM8N Wiring diagram

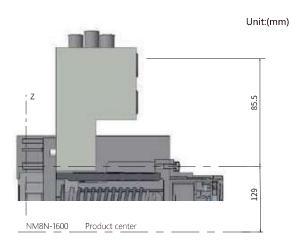




NM8N-630 Cable connector

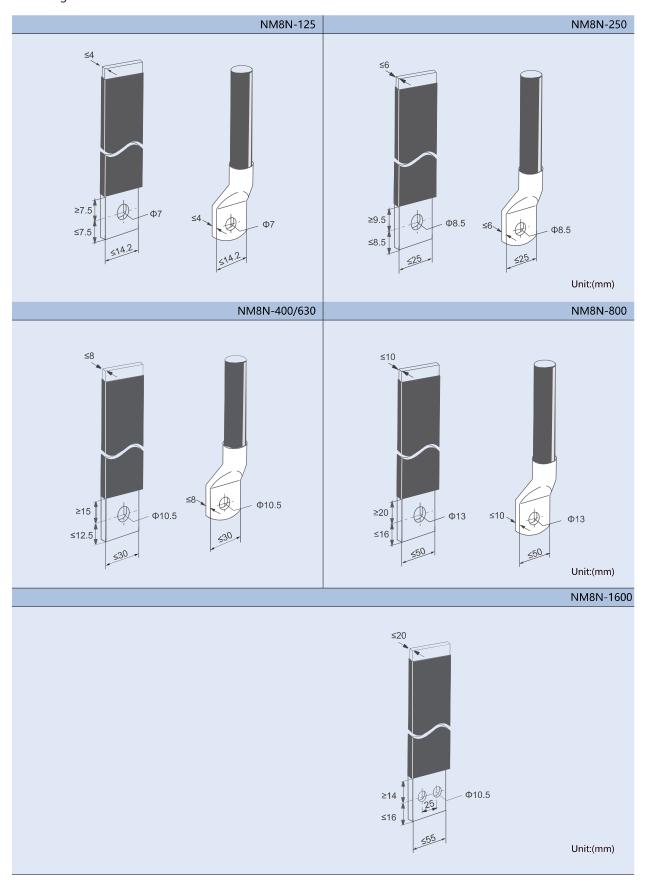


NM8N-800 Cable connector



Unit:(mm)

NM8N-1600 Cable connector

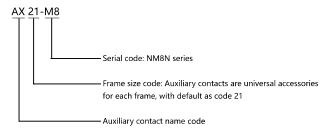


MC25-M8 4 hole

MC25-M8 3 hole

8.8 Wiring

9 Accessories characteristics and installation

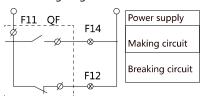

NM8N moulded case circuit breaker has various accessory modules, which can be found in P84 for more details

9.1 AX Auxiliary contact

9.1.1 Function

Remotely indicate the circuit breaker's making (on) or breaking / tripping (OFF) status, connected to the auxiliary circuit of the circuit breaker.

9.1.2 Model description


9.1.3 Indication of circuit breaker status

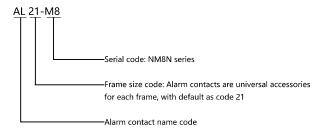
Circuit breaker is at breaking status	F12 — F11
Circuit breaker is at making status	F12 — F11 F14 — F11

9.1.4 Electrical characteristics

Rated	Rated current (A)						
voltage (V)	AC-15	DC-13					
AC 110	5	_					
AC 240	4	_					
AC 415	2	_					
DC 110	_	0.25					
DC 220	_	0.25					

9.1.5 Wiring diagram

9.2 AL Alarm contact

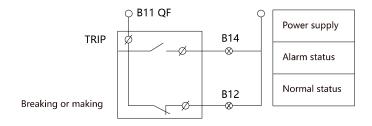

9.2.1 Function

It is mainly used to provide a signal when the load of the circuit breaker is overloaded, short-circuited or undervoltage, or tripped.

The reasons for the failure of the alarm signal are:

- Over-load or short-circuit
- Undervoltage trip
- Residual current action trip
- Manual free trip

9.2.2 Model description

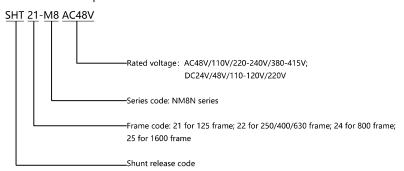

9.2.3 Indication of circuit breaker status

Circuit breaker is at breaking or making status	B12————————————————————————————————————
Circuit breaker is at free tripping status	B12 B11

9.2.4 Electrical characteristics

Rated	Rated current((A)
voltage(V)	AC-15	DC-13
AC 110	5	_
AC 240	4	_
AC 415	2	_
DC 110	_	0.25
DC 220	_	0.25

9.2.5 Wiring diagram

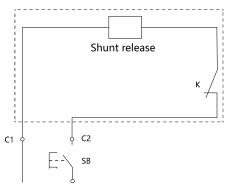


9.3 SHT Shunt release

9.3.1 Function

Shunt releases operate according to electrical signals, enabling remote control and automatic control of circuit breakers. When the supply voltage When the voltage is equal to any voltage between 70% and 110% of the rated control power supply voltage, the shunt release should enable the circuit breaker to operate reliably.

9.3.2 Model description


9.3.3 Electrical characteristics

	Power c	onsumptic	n (W)				
Frame size	AC48V	AC110V	AC220- 240V	AC380- 415V	DC24V	DC48V	DC220V
125A	2.2	2.2	2	2.5	2.5	2.2	2
250/400/630A	2.3	2.5	2.2	2.5	2.2	2.5	2.5
800A	2.3	2.5	2.2	2.5	2.2	2.5	2.5
1600A	110	195	480	560	230	110	160

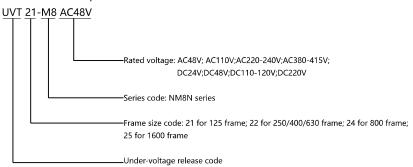
9.3.4 Action characteristics

Can be powered for a long time. Response time: pulse type \geq 20ms, \leq 60ms

9.3.5 Wiring diagram

Note: When the rated control power supply voltage DC24V shunt release is used, the maximum length of the copper wire (each of the two wires) must meet the following table:

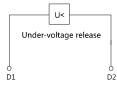
Conductor cross-sectional area Rated control supply voltageUs(DC24V)	1.5mm²	2.5mm ²
100%U _s	150m	250m
85%U _s	100m	160m


9.4 UVT Under-voltage release

9.4.1 Function

Realize the under-voltage protection function of the circuit breaker, open the circuit breaker when the power supply voltage is too low, and protect the electrical equipment.

- When the supply voltage drops (even slowly) to 70% to 35% of the rated control supply voltage, the undervoltage trips The breaker should open the circuit breaker reliably.
- When the supply voltage is equal to or greater than 85% of the rated control supply voltage of the undervoltage release, the circuit breaker should be guaranteed to close.
- When the supply voltage is less than 35% of the rated control supply voltage of the undervoltage release, the undervoltage release should prevent the circuit breaker.


9.4.2 Model description

9.4.3 Electrical characteristics

	Power co	Power consumption (W)										
Frame size	AC48V	AC110V	AC220- 240V	AC380- 415V	DC24V	DC48V	DC110- 120V	DC220V				
125A	1.6	1.6	2	3	1.2	1.6	2	2.2				
250/400/630A	1.5	1.5	2.2	3	0.8	1.5	2	2.5				
800A	1.5	1.5	2.2	3	0.8	1.5	2	2.5				
1600A	2.6	2.2	1.7	0.7	2.8	2.5	2.2	1.8				

9.4.4 Wiring diagram

9.5 MOD Motor-driven mechanism

9.5.1 Function

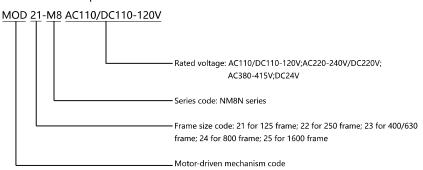
It is suitable for closing, opening and re-opening of circuit breakers at long distances, as well as automation applications.

A: Protection level: IP40

- Reliable insulation:
- · With isolation function indication;
- O (open), I (closed) and free trip 3 position indications;
- Free circuit breaker trip;
- Manually or automatically operated circuit breakers for closing and opening.

B: manual operation

Pull the "manual / auto" switch to the manual position and turn the operation handle to switch on and off the circuit breaker.


C: automatic operation

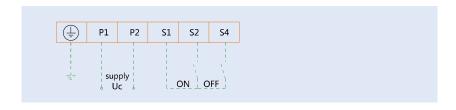
Pull the "manual / auto" switch to the automatic position, and remotely press the "close or open" button to switch on and off the circuit breaker.

D: Automatically switch on or off by pulse or self-holding signal control.

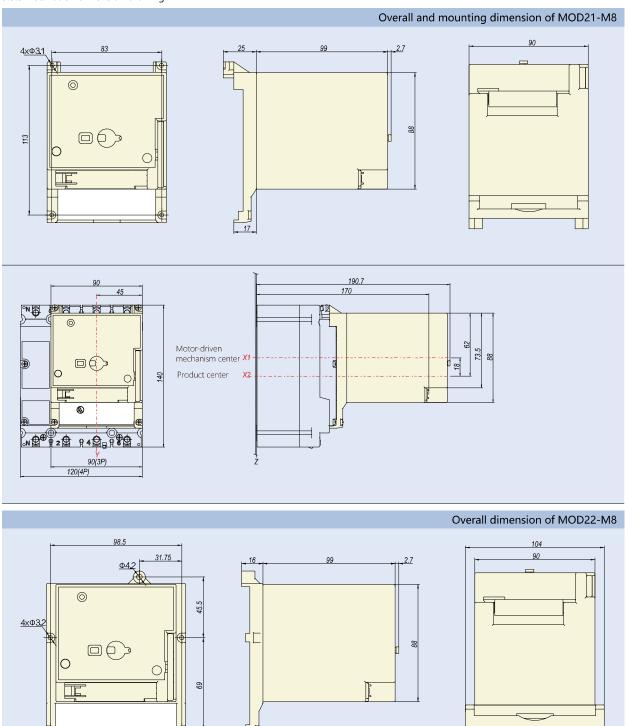
E: Only when the control voltage is \geq 85% Un and \leq 110% Un can the circuit breaker be reliably switched on and off.

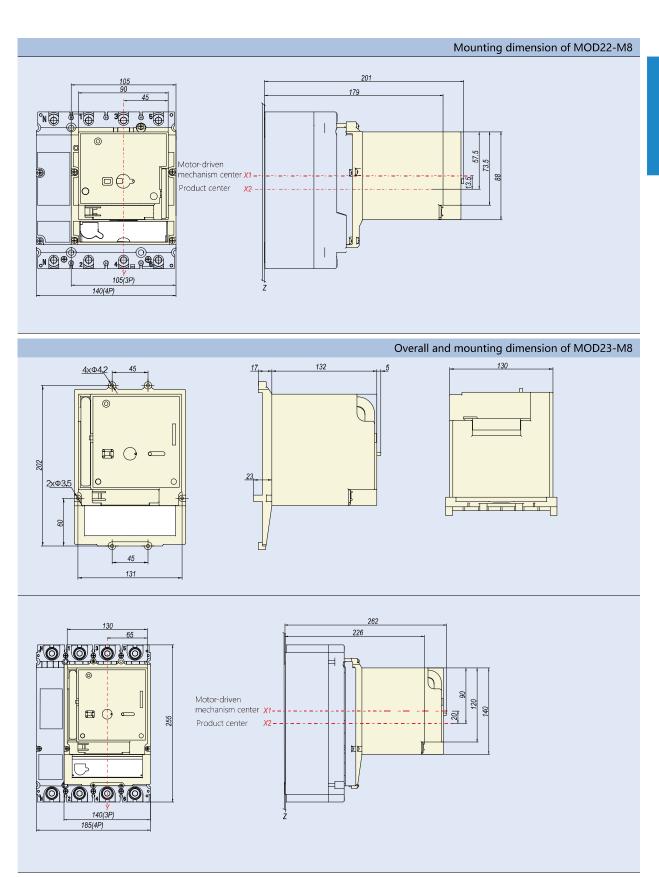
9.5.2 Model description

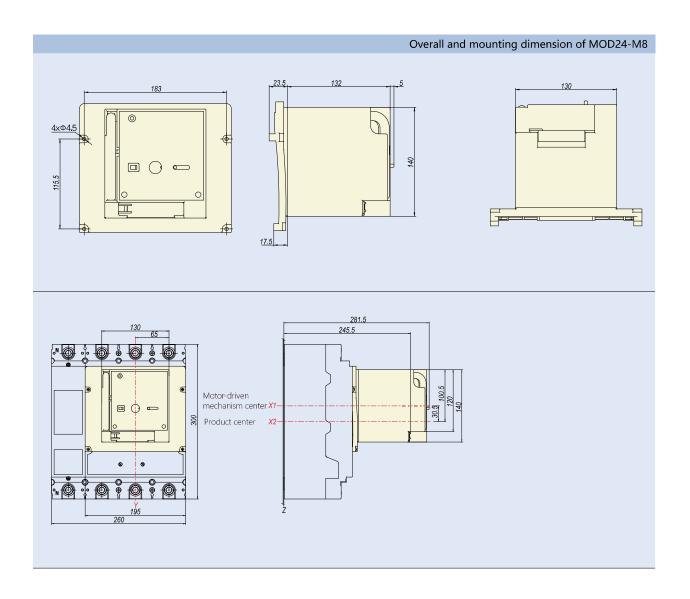
Note:


The 1600 frame motor-driven mechanism is assembled in the factory and is suitable for electronic circuit breakers and disconnectors according to the inside of the circuit breaker.

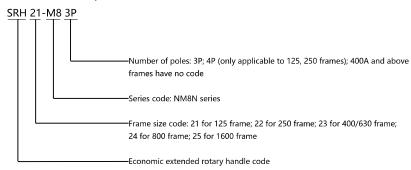
9.5.3 Electrical characteristics


9.5.3 Electrical characteristics

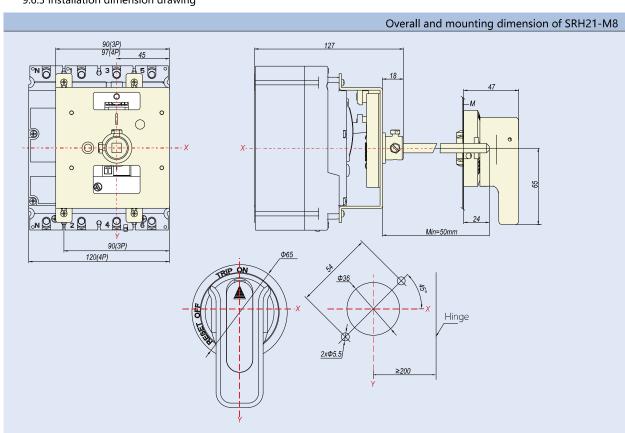

Frame size	Operational Type	Rated operational voltage	Life (CO recycle)	Power consumption	Action current	Making duration	Breaking duration	Minimum duration of ON(OFF) signal pulse
125A	MOD 21-M8	AC110V/DC110 AC220-240V DC220V AC380-415V DC24V	10000	150 150 150 100	≥ 3 ≥ 4	≤ 500ms	≤ 500ms	300ms
250A	MOD 22-M8	AC110V/DC110 AC220-240V DC220V AC380-415V DC24V	10000	150 150 150 100	≥ 3 ≥ 4	≤ 500ms	≤ 500ms	300ms
400/630A	MOD 2-M8	AC110V/DC110 AC220-240V DC220V AC380-415V DC24V	8000	300 300 300 190	≥ 3 ≥ 8	≤ 1000ms	≤ 1000ms	300ms
800A	MOD 23-M8	AC110V/DC110 AC220-240V DC220V AC380-415V DC24V	4000	300 300 300 190	≥ 3 ≥ 8	≤ 1000ms	≤ 1000ms	300ms

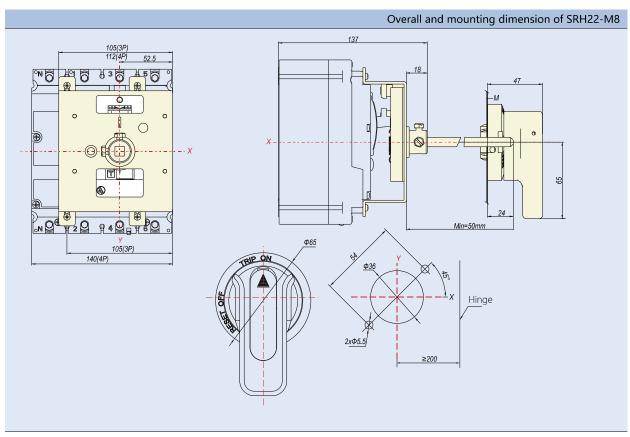

9.5.4 Wiring diagram

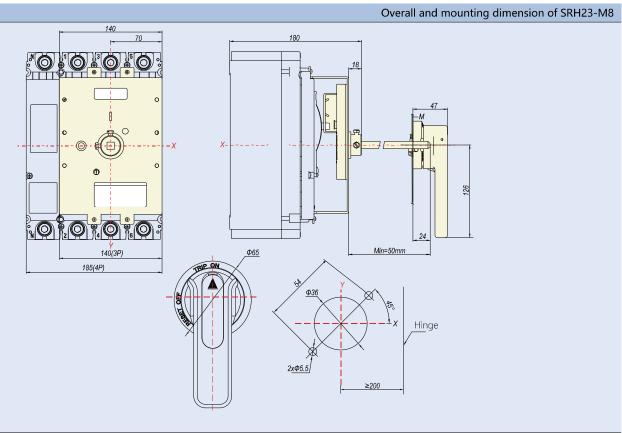
9.5.5 Installation dimension drawing

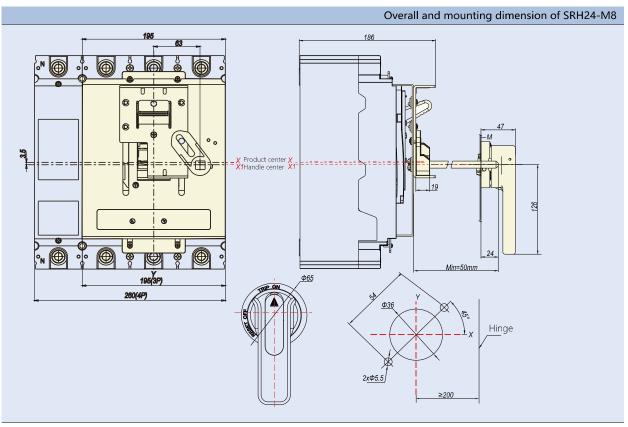

9.6 SRH Economic extended rotary handle

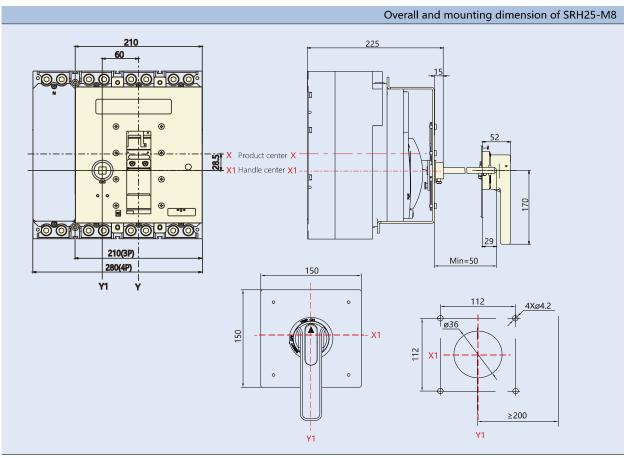
9.6.1 Function


The unique design and transmission structure are adopted to realize the closing, opening and re-closing operation of the circuit breaker by rotating the handle. Protection degree: IP30

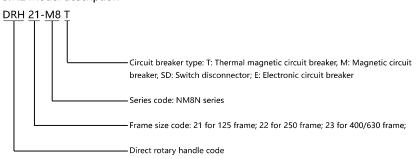

- With isolation function indication;
- O (open), I (closed) and free trip 3 position indications;
- The circuit breaker can be locked in the OFF position with 1 ~ 3 padlocks with a diameter of 5 ~ 8mm. At this time, it can prevent the circuit breaker from closing and the switch cabinet from opening;
- When the switch is in the ON position, the cabinet door cannot be opened under the action of the rotary handle (if the cabinet door is opened urgently, the cabinet door can be opened by the emergency unlocking device on the handle).


9.6.2 Model description

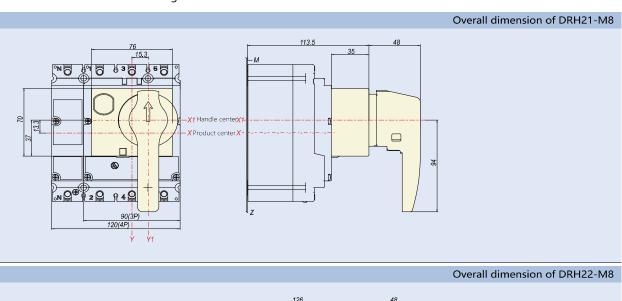


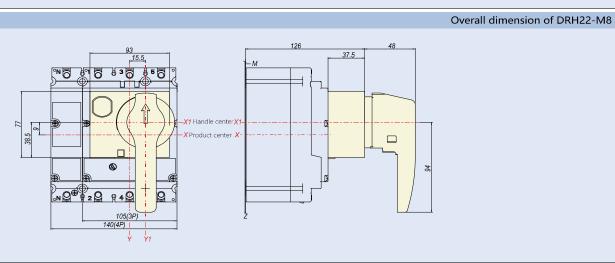

9.6.3 Installation dimension drawing

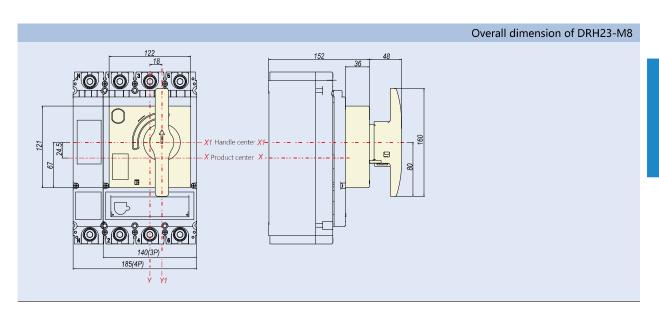
9.7 DRH Direct rotary handle


9.7.1 Function

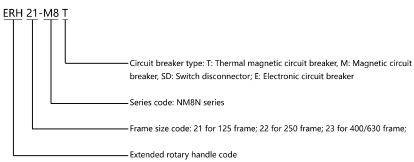
The unique design and transmission structure are adopted to realize the closing, opening and re-closing operation of the circuit breaker by rotating the handle.


Protection degree: IP40

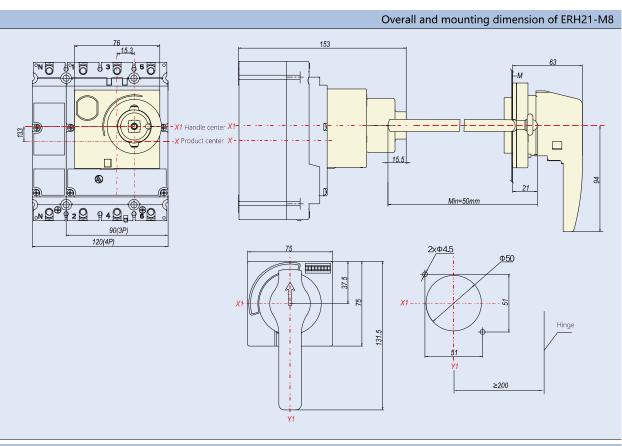

- Reliable insulation;
- · With isolation function indication;
- O (open), I (closed) and free trip 3 position indications;
- The circuit breaker can be locked in the OFF position through $1\sim3$ padlocks with a diameter of $5\sim8$ mm.
- (Padlock user prepared)

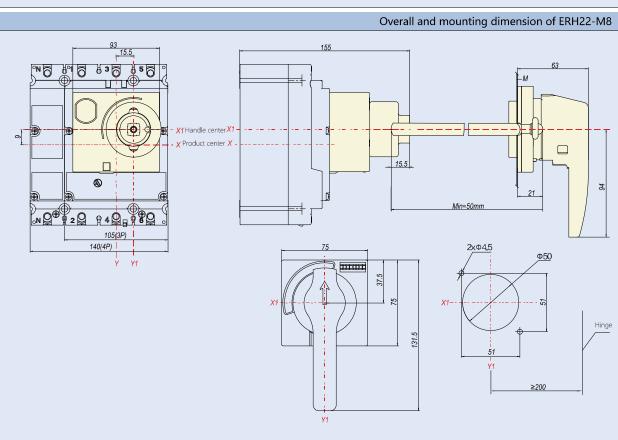

9.7.2 Model description

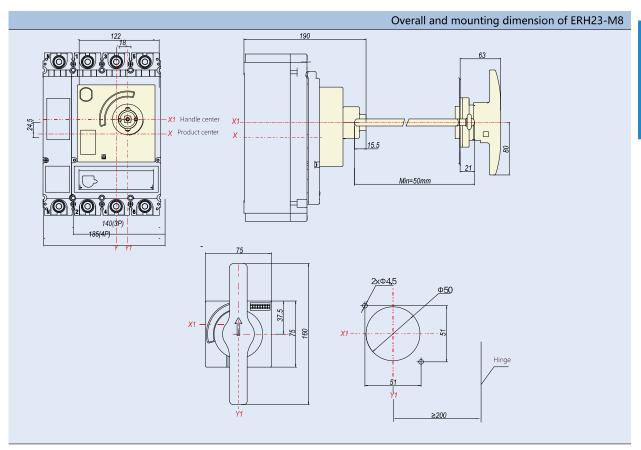
9.7.3 Installation dimension drawing


9.8 ERH Extended rotary handle

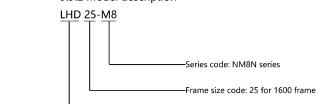
9.8.1 Function


The unique design and transmission structure are adopted to realize the closing, opening and re-closing operation of the circuit breaker by rotating the handle. Protection degree: IP50

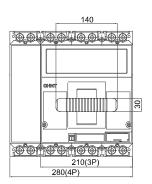

- · Reliable insulation;
- With isolation function indication;
- O (open), I (closed) and free trip 3 position indications;
- When the switch cabinet door is open, the setting value of the circuit breaker release can be set;
- When the switch cabinet door is opened, it can prevent the circuit breaker from
- The circuit breaker can be locked in the OFF position through (1 ~ 3) padlocks with a diameter of (5 ~ 8) mm;
- (Padlock user prepared) can prevent the switch cabinet door from opening at this time;
- When the switch is in the ON position, the cabinet door cannot be opened under the action of the rotary handle (if the cabinet door is opened urgently, the cabinet door can be opened by the emergency unlocking device on the handle).

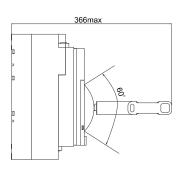

9.8.2 Model description

9.8.3 Installation dimension drawing


9.9 LHD Extended handle

9.9.1 Function


With a unique design, the circuit breaker can be closed, opened and re-latched by rotating the handle. It is only applicable to 1600A.


-Extended handle code

9.9.2 Model description

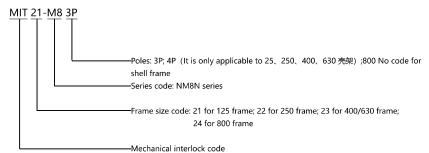
9.9.3 Overall dimension

9.10.1 Function

The locking system locks the open position of the circuit breaker.

- The locking system can be equipped with (1 ~ 3) padlocks with a diameter range (5
- (Padlock user prepared))

9.10.2 Model description



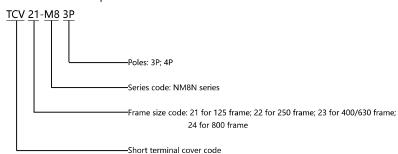
9.11 MIT Mechanical interlock

9.11.1 Function

When used together with two circuit breakers with the same housing, when one circuit breaker is closed, the other circuit breaker cannot be closed and is in the open state.

9.11.2 Model description

9.12 TCV Short terminal cover


9.12.1 Function

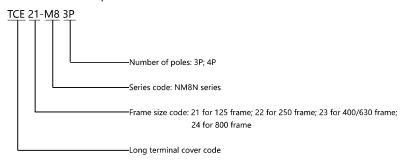
Prevents contact with the main circuit and can also be used to prevent short circuit between phases.

Protection degree: IP40

For voltages ≥ 500V, terminal covers must be fitted

9.11.2 Model description

9.13 TCE Long terminal cover

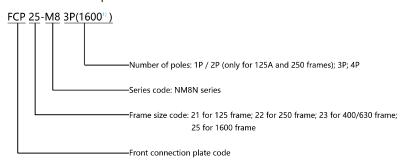

9.13.1 Function

Prevents contact with the main circuit and can also be used to prevent short circuit between phases. There are knock-out holes in front of the terminal cover to accommodate various lug cables and front wiring.

Protection degree: IP40

For voltages ≥ 500V, terminal covers must be fitted

9.13.2 Model description

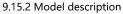


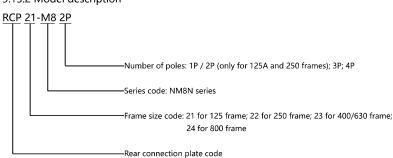
9.14 FCP Front connection plate

9.14.1 Function

Make the circuit breaker have a flexible wiring mode. By installing this accessory, the pole spacing can be increased to increase the electrical gap between adjacent poles at the inlet and outlet ends of the circuit breaker and enhance the safety between lines.

9.14.2 Model description



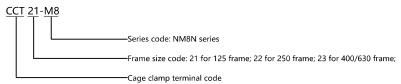

Note¹⁾: Only applicable to 1600 frame, there are three specifications of 1000, 1250, 1600

9.15 RCP Rear connection plate

9.15.1 Function

Make the circuit breaker have flexible wiring mode, which can realize the wiring behind the board

CCT23-M8



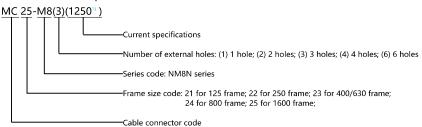
9.16 CCT Cage clamp terminal

9.16.1 Function

Make the circuit breaker have a flexible wiring mode, which can directly connect the bare wires.

9.16.2 Model description

9.16.3 Wiring capacity


Serial No.	Wiring capacity	Torque	
CCT21-M8	(2.5~75)mm ²	8N·m	
CCT22-M8	(10~120)mm ²	10N·m	
CCT23-M8	(120~240)mm ²	35N·m	

9.17 MC Cable connector

9.17.1 Function

Make the circuit breaker have a flexible wiring method, which can directly connect the bare wires and realize the connection of multiple wires.

9.17.2 Model description

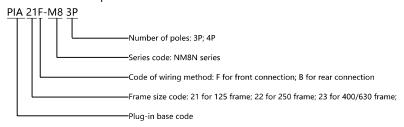
 $\mathsf{Note}^{\mathsf{1}\mathsf{1}}$: Only applicable to 1600 housing, only 800-1250 specifications

9.17.3 Wiring capacity

- · · ·			
Serial No.	Wiring capacity	Torque	Note
MC21-M8 (1)	(16~95)mm ²	10N·m	1hole
MC22-M8 (1)	(35~240)mm ²	30N·m	1hole
MC22-M8 (2)	2x(35~120)mm ²	30N·m	2holes
MC22-M8 (6)	6x(10~35)mm ²	10N·m	6holes
MC23-M8 (2)	2x(120~240)mm ²	35N·m	2holes
MC23-M8 (4)	4x95mm²	15N·m	4holes
MC24-M8 (2)	2x240mm ²	35N·m	2holes
MC25-M8(800) (3)	3x(95~300)mm ²	35N·m	3holes
MC25-M8(1000/1250) (4)	4x(95~240)mm ²	35N·m	4holes

9.18 PIA Plug-in base

9.18.1 Function

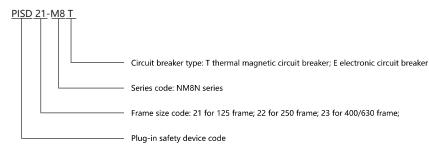

Quickly change the circuit breaker without changing the inlet and outlet wires and installing the base;

Plug-in base can be pre-installed, which is convenient for customers to add circuit breakers in the future;

When the circuit breaker is installed through the board or the base, the power circuit can be isolated:

With plug-in safety device function (optional), it can ensure that the circuit breaker can trip automatically when it is pulled out when the circuit breaker is closed.

9.18.2 Model description



9.19 PISD Plug-in safety device

9.1 Function

Used together with the plug-in base, it can ensure that the circuit breaker can automatically trip when it is pulled out when the circuit breaker is closed.

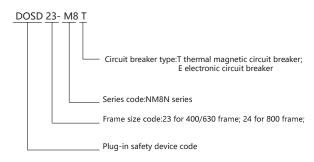
9.2 Model description

9.20 DOB Draw-out base

9.20.1 Function

- Quickly change the circuit breaker without changing the inlet and outlet wires and installing the base;
- Withdrawable base can be installed in advance to provide convenience for customers to add circuit breakers later;
- With plug-in safety device function (optional), it can ensure that the circuit breaker can automatically trip when it is pulled out when the circuit breaker is closed.

9.20.2 Model description


Note¹⁾: DOB23 is suitable for 400/630 housings. There are two specifications of 400 and 630.

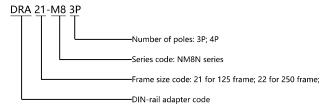
9.21 DOSD Draw-out safety device

9.21.1 Function

Used together with the plug-in base, it can ensure that the circuit breaker can automatically trip when it is pulled out when the circuit breaker is closed.

9.21.2 Model description DOSD 23-M8 T

Note¹⁾: This accessory is pre-mounted with DOB, do not need to order.



9.22 DRA DIN-rail adapter

9.22.1 Function

Adapt to the body and can be mounted on a 35mm standard DIN rail

9.22.2 Model description

9.23 COMA communication module

9.23.1 Function

The COMA communication module is an interface module for the communication between the electronic plastic case circuit breaker and the bus system, and performs communication and relay control output. Combined with the Modbus-RTU communication protocol, this communication module can easily establish a connection with a fieldbus master device to achieve three remote or four remote functions.

The technical parameters are as follows:

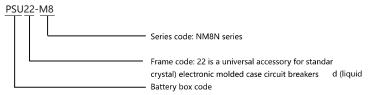
- Rated voltage: AC230V or DC24V (error range ± 15%)
- Communication type: RS485 (Modbus-RTU protocol)
- Contact capacity: AC250V / 3A; DC30V / 3A
- Transmission medium: shielded twisted pair
- Transmission distance: 1.2km (using category A shielded twisted pair)
- · Working status indication: LED indication
- Number of stations: 1 station

9.23.2 Model description

9.23.3 Communication solution

Solutions	Achievable function	Required products and accessories	Note
Solution 1	Remote mea- sure	NM8N basic or standard electronic molded case circuit breaker; COMA22-M8 communication module.	1.Read phase current
Solution 2	Remote measure Remote signal	NM8N basic or standard electronic moulded case circuit breaker; COMA22-M8 communication module; AX auxiliary contact (optional, indicating opening and closing status); AL alarm contact (optional, indicating trip status).	Read phase current Indicate circuit breaker position information (open, closed, trip status)
Solution 3	Remote measure Remote signal Remote control	NM8N basic or standard electronic moulded case circuit breaker; COMA22-M8 communication module; AX auxiliary contact (optional, indicating opening and closing status); AL alarm contact (optional, indicating trip status); MOD electric operation mechanism.	1. Read phase current 2. Indicate circuit breaker position information (open, closed, trip status) 3. Control circuit breaker opening and closing
Solution 4	Remote measure Remote signal Remote control Remote adjustment	NM8N standard electronic molded case circuit breaker; COMA22-M8 communication module; AX auxiliary contact (optional, indicating opening and closing status); AL alarm contact (optional, indicating trip status); MOD electric operation mechanism.	1. Read phase current 2. Indicate circuit breaker position information (open, closed, trip status) 3. Control circuit breaker opening and closing 4. Adjust the internal parameter settings of the controller (only for standard specifications. For details, please refer to the communication protocol).

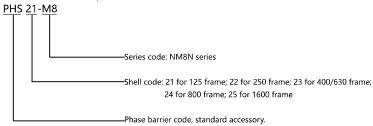
9.24 PSU battery box


9.24.1 Function

Provide DC 9V power for the standard (liquid crystal) controller for users to view, set and modify controller parameters, when current under 0.4In. The batteries inside box are changeble.

Output voltage: DC 9V

Continuous power supply time: 7 hours


9.24.2 Model description

9.25 PHS Phase barrier

9.26.1 Function

Guarantees phase-to-phase insulation safety and prevents phase-to-phase short circuits 9.26.2 Model description

9.26 Installation diagram of internal accessories

	Mounting and wiring mo	de	Left ON Righ Handle OFF	t	
Accessory name	NM8N-125, 250 NM8NL-125, 250	NM8N-400, 630 NM8NL-400, 630	NM8N-800	NM8N-1600	NM8N-1600 MOD
	3P, 4P	3P, 4P	3P, 4P	3P, 4P	3P, 4P
No accessory					
Alarm contact					• 🖹
Auxiliary contact					
Shunt release					
Under-voltage release					
Shunt release Auxiliary contact					
Auxiliary contact Under-voltage release					
Shunt release Alarm contact					
Auxiliary contact Alarm contact					
Under-voltage release Alarm contact					
Shunt release Auxiliary contact, alarm					
Auxiliary contact alarm contact Under-voltage release					

 $[\]blacksquare \text{-Shunt release} \qquad \blacktriangle \text{-Under-voltage release} \qquad \circ \text{-Auxiliary contact} \qquad \bullet \text{-Alarm contact}$

Note: a. NM8N-125, 250, 400, 630, 800 cannot be equipped with undervoltage release and shunt release at the same time;

- c. NM8N-400, 630 can install up to 3 sets of auxiliary contacts;
- d. NM8N-800 can be equipped with up to 4 auxiliary contacts;
- e. NM8N-1600 MOD can be equipped with a maximum of 3 sets of auxiliary contacts, and can simultaneously install undervoltage release and shunt release;
- f. NM8N series can only be equipped with one alarm contact.

b. NM8N-125, 250 3P / 4P can be equipped with a maximum of 2 sets of auxiliary contacts; 1P has no internal accessories; 2P can be equipped with a maximum of one auxiliary / alarm contact at the same time;

10 Technical Supplement 10.1 DC application wiring method

Solutions	Unipolar grounding system	Ungrounded system
Circuit diagram	A R	The state of the s
Impact of fault	Fault A maximum short-circuit current I _{sc} Fault B maximum short-circuit current I _{sc} Fault C has no effect	Fault A has no effect Fault B maximum short-circuit current I _{sc} Fault C has no effect
≤DC500V	Note: 1. The upper and lower lines can be used, here the following lines are taken as an example.	Note: 1. Both the upper and lower lines can be used, here the following lines are taken as an example; 2. Make sure that the installation method does not cause a secondary ground fault.
DC500~750V	Note: 1. The upper and lower lines can be used, here the following lines are taken as an example.	Note: 1. Both the upper and lower lines can be used, here the following lines are taken as an example; 2. Make sure that the installation method does not cause a secondary ground fault.
DC750~1000V	Note: 1. The upper and lower lines can be used, here the following lines are taken as an example.	Load

10.2 NM8N power loss table

		Rated current	Fixed circuit breaker	Power loss
Release type	Model	(A)	resistance loss per pole $m\Omega$	per pole (W)
		16	8.8	2.3
		20	8.8	3.5
		25	5.2	3.3
		32	4.5	4.6
	NM8N-125	40	2.6	4.2
	INIVIOIN-123	50	1.8	4.5
		63	1.7	6.7
		80	1.3	8.3
		100	0.88	8.8
		125	0.8	12.5
		125	0.7	10.9
		160	0.55	14.1
	NM8N-250	180	0.55	17.8
	INIVIOIN-230	200	0.55	22.0
Thermal		225	0.4	20.3
magnetic		250	0.4	25.0
		250	0.35	21.9
	NM8N-400	315	0.25	24.8
	INIVIOIN-400	350	0.25	30.6
		400	0.15	24.0
	NM8N-630	400	0.15	24.0
	NIVI8IN-630	500	0.12	30.0
		500	0.08	20.0
	NIMAGNI GOO	630	0.08	31.8
	NM8N-800	700	0.08	39.2
		800	0.08	51.2
		800	0.08	51.2
	NINAONI 1600	1000	0.08	80.0
	NM8N-1600	1250	0.04	62.5
		1600	0.04	102.4
		32	0.8	0.8
		63	0.4	1.6
	NM8N-250	100	0.4	4.0
		160	0.4	10.2
		250	0.4	25.0
	NIN 40NI 400	250	0.15	9.4
- · ·	NM8N-400	400	0.15	24.0
Electronic		400	0.15	24.0
	NM8N-630	630	0.12	47.6
	NM8N-800	800	0.08	51.2
		800	0.08	51.2
	NIN 40NI 4600	1000	0.08	80.0
	NM8N-1600	1250	0.04	62.5
		1600	0.04	102.4
		63	0.8	3.2
	NM8NSD-125	100	0.8	8.0
		125	0.8	12.5
		125	0.4	6.3
	NIMAGNICE SES	160	0.4	10.2
Switch disconnector	NM8NSD-250	200	0.4	16.0
uiscomiector		250	0.4	25.0
	NIN 402 102	250	0.15	9.4
	NM8NSD-400	400	0.15	24.0
	NM8NSD-630	630	0.12	47.6
	NM8NSD-800	800	0.08	51.2

10.3 NM8N thermal magnetic circuit breaker rated operational current and temperature compensation coefficient table

t	Ambient emperature		-35°C	-25°C	-15℃	-5°C	0°C	+10°C	+20°C	+30°C	+40°C	+50°C	+60°C	+70°C
Rated curren	t 16A	22.5	22	20.5	20	19.5	19	18.5	17.5	17	16	15	14.5	14
	20A	28	27.5	26.5	25.5	24.5	24	23	22	21	20	19.5	18.5	18
	25A	35	34	33	32	30.5	30	28	27	26	25	24	22.5	22
	32A	45	44	42	41	39	38	37	35	33	32	30.5	29	28
NM8N-	40A	56	55	53	51	49	48	46	44	42	40	37	33.5	29
125	50A	70	68.5	66	64	61	60	57.5	55	52.5	50	47.5	45	40
	63A	88	86.5	83	80	77	75	72	69	66	63	58.5	53	46
	80A	112	110	106	102	98	96	92	88	84	80	74.5	67	56
	100A	140	137	132	127	122	120	115	110	105	100	93	84	80
	125A	175	172	165	159	153	150	144	137	131	125	116	105	91
	125A	175	172	165	159	153	150	144	137	131	125	118	106	96
	160A.	224	220	212	204	196	192	184	176	168	160	152	136	120
NM8N-	180A	252	247	238	229	220	216	207	198	189	180	171	157	144
250	200A	280	275	265	255	245	240	230	220	210	200	190	175	166
	225A	315	309	300	288	276	270	259	247	236	225	213	196	180
	250A	350	343	332	319	306	300	287	275	262	250	237	218	207
	250A	350	343	332	319	306	300	287	275	262	250	237	225	212
NM8N-	315A	441	433	418	402	386	378	362	346	331	315	300	286	271
400	350A	490	481	465	447	429	420	402	385	367	350	332	295	276
	400A	560	550	530	510	490	480	460	440	420	400	380	360	320
	250A	350	343	332	319	306	300	287	275	262	250	237	225	212
	315A	441	433	418	402	386	378	362	346	331	315	300	286	271
NM8N- 630	350A	490	481	465	447	429	420	402	385	367	350	332	295	276
	400A	560	550	530	510	490	480	460	440	420	400	380	360	320
	500A	700	687	662	637	612	600	575	550	525	500	450	406	360
	500A	700	687	662	637	612	600	575	550	525	500	490	460	400
NM8N-	630A	882	866	836	804	772	756	724	693	661	630	580	530	490
800	700A	980	962	927	892	857	840	805	770	735	700	670	645	575
	800A	1120	1100	1060	1020	980	960	920	880	840	800	735	670	625
	800A	1120	1100	1060	1020	980	960	920	880	840	800	760	696	640
NM8N-	1000A	1400	1375	1325	1275	1225	1200	1150	1100	1050	1000	950	870	800
1600	1250A	1750	1718	1656	1594	1531	1500	1437	1375	1312	1250	1187	1088	1000
	1600A	2240	2200	2120	2040	1960	1920	1840	1760	1680	1600	1520	1390	1280

Note¹⁾ For a multi-pole DC circuit breaker, if a 2m long standard wire is used in series, the derating factor above applies.

^{2):} When the copper short-circuit bar is connected in series, it needs to be further reduced based on the above table (except NM8NDC-1600). The specific derating factor should be determined by users according to their different wiring methods. Derating by a factor of 0.8).

10.4 NM8N electronic circuit breaker rated operational current and temperature compensation coefficient table

Rated current	Ambient emperature		-15℃	-5℃	0℃	+10°C	+20°C	+30°C	+40°C	+50°C	+60°C	+70°C
	32A	32	32	32	32	32	32	32	32	32	32	32
	63A	63	63	63	63	63	63	63	63	63	63	63
NM8N-250	100A	100	100	100	100	100	100	100	100	100	100	100
	160A	160	160	160	160	160	160	160	160	160	160	160
	250A	250	250	250	250	250	250	250	250	240	225	213
NM8N-400	250A	250	250	250	250	250	250	250	250	250	250	250
INIVIOIN-400	400A	400	400	400	400	400	400	400	400	380	360	340
	250A	250	250	250	250	250	250	250	250	250	250	250
NM8N-630	400A	400	400	400	400	400	400	400	400	380	360	340
	630A	630	630	630	630	630	630	630	630	600	570	540
NM8N-800	630A	630	630	630	630	630	630	630	630	630	630	630
INIVIOIN-000	800A	800	800	800	800	800	800	800	800	760	720	680
	800A	800	800	800	800	800	800	800	800	800	800	800
NM8N-1600	1000A	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
141614-1600	1250A	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250
	1600A	1600	1600	1600	1600	1600	1600	1600	1600	1520	1440	1360

Note: Individual specifications of products need to be derated at a temperature of 50 ° C and above (parameters refer to the table), and Ir needs to be adjusted to the corresponding gear.

For example: NM8N-250 EN 250 3P products are used at 70 ° C. The product needs to be derated to 213A, and the Ir position is adjusted to 0.8In position. The NM8N-250 EM 250 3P product is used at 70 ° C. The product should be derated to 213A, and the Ir position should be adjusted to 213A.

10.5 Derating factor table for circuit breaker with residual current protection module

Model		Derating factor
	16A~63A	1
NM8N-125+NM8NL-125	80A~100A	0.9
	125A	0.8
NM8N-250+NM8NL-250	125A~180A	1
INIVION-230+INIVIONL-230	200A~250A	0.9
NIMANI 250 NIMANII 250 electronic tymo	32A、63A、100A、160A	1
NM8N-250+NM8NL-250 electronic type	250A	0.95
	250A	1
NM8N-400+NM8NL-400	315A、350	0.96
	400A	0.93
NIMONI 400 - NIMONII 400 electronic tuno	250A	1
NM8N-400+NM8NL-400 electronic type	400A	0.95
NM8N-630+NM8NL-630	400A	0.93
INIVIOIN-03U+INIVIOINL-03U	500A	0.87
NIMONI 620 NIMONII 620 electronic type	400A~500A	1
NM8N-630+NM8NL-630 electronic type	630A	0.90

10.6 Derating factor table for circuit breakers with plug-in or draw-out accessories

Model		Derating factor	
Model		+Plug-in type	+Economic draw-out type
NM8N-125	16A-100A	1	/
INIVIOIN-125	125A	0.95	/
NIMONI OFO	125A-180A	1	/
NM8N-250	200A-250A	0.95	/
NM8N-250	32A、63A、100A、160A	1	/
electronic type	250A	0.95	/
NM8N-400	250A-400A	1	1
NM8N-400 electronic type	250A-400A	1	1
NM8N-630	400A	1	1
INIVIOIN-03U	500A	0.95	1
NM8N-630	400A-500A	1	1
electronic type	630A	0.9	0.9
NIMONI OOO	500-700A	/	0.95
NM8N-800	800A	/	0.9
NM8N-800	630A	/	1
electronic type	800A	/	0.9

10.7 NM8N Derating factor table for circuit breakers altitude

Altitude (m)			2000m	3000m	4000m	5000m
Rated operational current	In		1×In	0.96×In	0.93×In	0.9×In
Rated operational voltage	Ho (V)	AC	690	550	480	420
Rated operational voitage	ede (v)	DC (4pole string)	1000	900	850	800
Rated insulation voltage U	Ji (V)		1000	930	870	800
	۸۲	Uimp =8kV	2200	2050	1900	1770
Dialoctric properties (V)	AC	Uimp =12kV	2550	2370	2200	2050
Dielectric properties (V) -	DC	Uimp =8kV	3110	2892	2705	2488
	DC	Uimp =12kV	3600	3350	3110	2985
Rated insulation impulse v	voltage	NM8N-125 NM8N-250 NM8N-1600	8	8	8	8
Uimp (kV)		NM8N-400 NM8N-630 NM8N-800	12	10	8	8

10.8 Cascading (AC220/230/240V)

Upstream	NM	8N-1	125			NM	8N-2	250			NM	8N-4	100			NM	8N-6	530			NM	8N-8	300		
Breaking capacity	С	S	Q	Н	R	С	S	Q	Н	R	С	S	Q	Н	R	С	S	Q	Н	R	С	S	Q	Н	R
(kA rms)	36	50	70	100	150	36	50	70	100	150	36	50	70	100	150	36	50	70	100	150	36	50	70	100	150
Downstream	Brea	ıking	ј сар	acity	/ (kA	\ rms	5)																		
NB1N	25	30	40	60	60	25	30	40	60	60	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
NB1H	30	40	50	65	65	30	40	50	65	65	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
NM8N-125C		50	60	80	100		50	60	80	100		50	60	80	100		50	60	80	100		50	60	80	100
NM8N-125S			70	90	120			70	90	120			70	90	120			70	90	120			70	90	120
NM8N-125Q				90	140				90	140				90	140				90	140				90	140
NM8N-125H					150					150					150					150					150
NM8N-250C							50	60	80	100		50	60	80	100		50	60	80	100		50	60	80	100
NM8N-250S								70	90	120			70	90	120			70	90	120			70	90	120
NM8N-250Q									90	140				90	140				90	140				90	140
NM8N-250H										150					150					150					150
NM8N-400C												50	60	80	100		50	60	80	100		50	60	80	100
NM8N-400S													70	90	120			70	90	120			70	90	120
NM8N-400Q														90	140				90	140				90	140
NM8N-400H															150					150					150
NM8N-630C																	50	60	80	100		50	60	80	100
NM8N-630S																		70	90	120			70	90	120
NM8N-630Q																			90	140				90	140
NM8N-630H																				150					150
NM8N-800C																						50	60	80	100
NM8N-800S																							70	90	120
NM8N-800Q																								90	140
NM8N-800H																									150

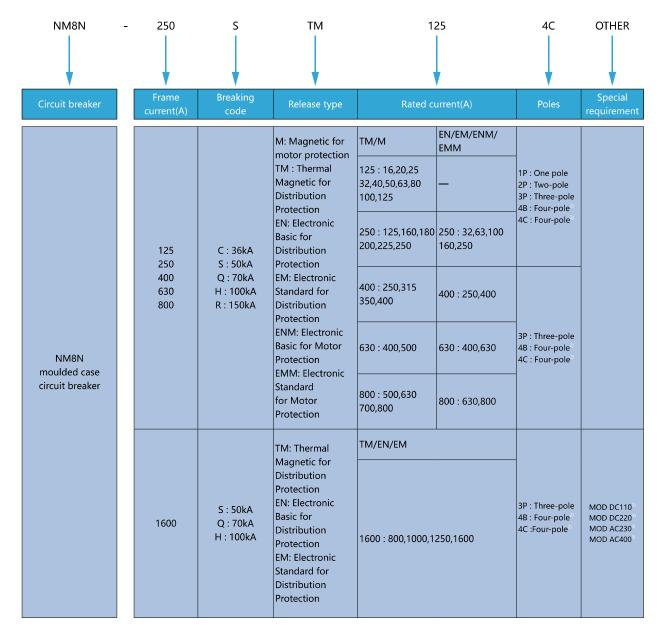
10.9 Cascading (AC380/400/415V)

Upstream	NM	8N-1	25			NM	8N-2	250			NM	8N-4	100			NM	8N-6	30			NM	8N-8	300		
Breaking	С	s	Q	Н	R	С	s	Q	Н	R	С	S	Q	н	R	С	s	Q	н	R	С	s	Q	Н	
capacity (kA rms)	36	50	70	100	150	36	50	70	100	150	36	50	70	100	150	36	50	70	100	150	36	50	70	100	150
Downstream	Brea	aking	, сар	acity	/ (kA	rms	5)																		
NB1N	20	25	25	25	25	20	25	25	25	25	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
NB1H	30	30	30	30	30	30	30	30	30	30	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
NM8N-125C		50	50	80	100		50	50	80	100		50	50	80	100		50	50	80	100		50	50	80	100
NM8N-125S			70	90	120			70	90	120			70	90	120			70	90	120			70	90	120
NM8N-125Q				90	140				90	140				90	140				90	140				90	140
NM8N-125H					150					150					150					150					150
NM8N-250C							50	50	80	100		50	50	80	100		50	50	80	100		50	50	80	100
NM8N-250S								70	90	120			70	90	120			70	90	120			70	90	120
NM8N-250Q									90	140				90	140				90	140				90	140
NM8N-250H										150					150					150					150
NM8N-400C												50	50	80	100		50	50	80	100		50	50	80	100
NM8N-400S													70	90	120			70	90	120			70	90	120
NM8N-400Q														90	140				90	140				90	140
NM8N-400H															150					150					150
NM8N-630C																	50	50	80	100		50	50	80	100
NM8N-630S																		70	90	120			70	90	120
NM8N-630Q																			90	140				90	140
NM8N-630H																				150					150
NM8N-800C																						50	50	80	100
NM8N-800S																							70	90	120
NM8N-800Q																								90	140
NM8N-800H																									150

10.10 Selective protection

Upstream		18MN	N-125									18MN	1-250					18MN	I-250 E	lectron	ic		
Downstream	In (A)	16	20	25	32	40	50	63	80	100	125	125	160	180	200	225	250	32	63	100	160	250	
	≤ 10	190	190	300	400	500	500	500	630	800	1000	Т	Т	Т	Т	Т	Т	400	500	1000	Т	Т	
	16			300	400	500	500	500	630	800	1000	Т	Т	Т	Т	Т	Т	400	500	1000	Т	Т	
	20					500	500	500	630	800	1000	Т	Т	Т	Т	Т	Т		500	1000	Т	Т	
NB1	25						500	500	630	800	1000	Т	Т	Т	Т	Т	Т		500	1000	Т	Т	
Tripping curve:B/C	32							500	630	800	1000	2000	5000	Т	Т	Т	Т		500	1000	T	Т	
	40								630	800	1000	2000	5000	Т	Т	Т	Т			1000	Т	Т	
	50									800	1000	2000	5000	Т	Т	Т	Т			1000	T	Т	
	63										1000	2000	5000	Т	Т	Т	Т			1000	T	Т	
	16					400	500	500	630	800	1000	1000	2500	2500	2500	2500	2800		500	1000	2500	2800	
	20						500	500	630	800	1000	1000	2500	2500	2500	2500	2800		500	1000	2500	2800	
	25							500	630	800	1000	1000	2500	2500	2500	2500	2800		500	1000	2500	2800	
	32								630	800	1000	1000	2500	2500	2500	2500	2800			1000	2500	2800	
NINAONI 405	40									800	1000	1000	2000	2000	2500	2500	2800			1000	2000	2800	
NM8N-125	50										1000	1000	2000	2000	2500	2500	2800			1000	2000	2800	
	63											1000	2000	2000	2500	2500	2800				2000	2800	
	80												2000	2000	2500	2500	2800				2000	2800	
	100														2500	2500	2800					2800	
	125															2500	2800					2800	
	125																						
	160																						
NIMONI OFO	180																						
NM8N-250	200																						
	225																						
	250																						
	32																			1000	2000	2800	
	63																				2000	2800	
NM8N-250 Electronic	100																					2800	
	160																						
	250																						
	250																						
NIMANI 400	315																						
NM8N-400	350																						
	400																						
NM8N-400	250																						
Electronic	400																						
	250																						
	315																						
NM8N-630	350																						
	400																						
	500																						
	250																						
NM8N-630 Electronic	400																						
	630																						

Note: 1) No content, meaning no selectivity.

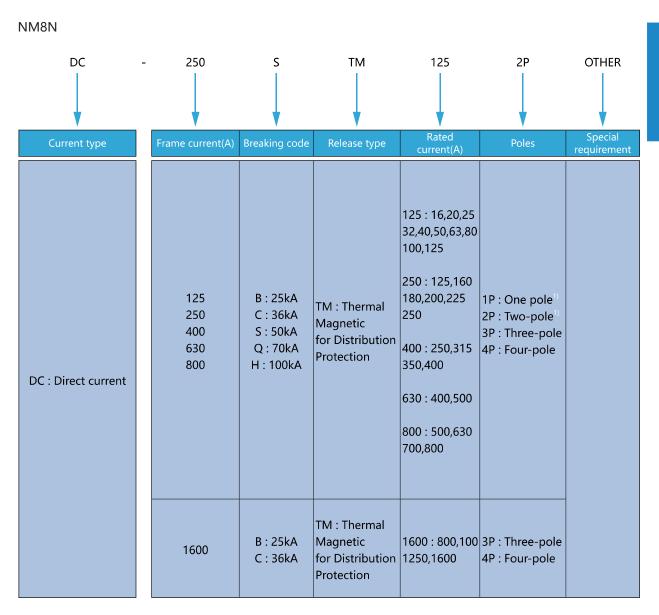

²⁾ 1000, which indicates local selectivity, and the number indicates the maximum fault current to achieve selectivity. For example, selectivity below 1000A can be achieved here, and upper and lower circuit breakers above 1000A may operate simultaneously.

³⁾ T, which means that full selectivity is satisfied within the breaking capacity of the lower circuit breaker.

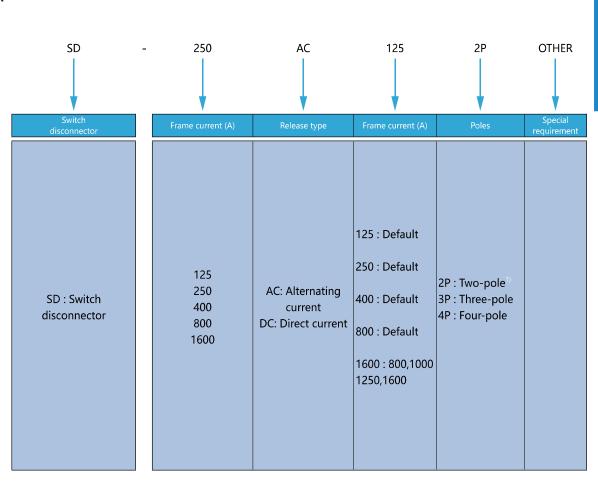
NM8N-400				NM8N- 400 NM8N-630 Electronic						NM8N-630 Electronic			NM8N-800			NM8N -800 Electronic	-800 NM8N-1600				NM8N-1600 Electronic					
250	315	350	400	250	400	250	315	350	400	500	250	400	630	500	630	700	800	800	800	1000	1250	1600	800	1000	1250	1600
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	Т	T	Т	T	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	Т	T	Т	T	Т	Т	Т	T	Т	Т	Т	Т	Т	T	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	Т	T	Т	T	Т	Т	Т	T	Т	Т	Т	Т	Т	T	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	T	Т	Т	T	Т	T	T	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	Т	Т	Т	Т	Т	T	T	Т	Т
T -	T _	T _	T _	T -	T	T -	T _	T -	T _	T -	T _	T _	T -	T -	T -	T _	T	T	T	T	T -	T	T	T _	T	T
T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
 -	T	T	 -	T	- -	T	T	T	 -	T		T	T	T	T	T	T		T	T	T		T -	T	T	T
 -	T	 -	T	T	T	T	T	T	T	T	T	T	T	T	T	T	 -	T	T	T			T	T	- -	T
T	Т	Т	Т	T	T	T T	T	T	T T	T	Т	T	Т	T	Т	T	T	т	T	T	T T	T	T	T T	Т	T T
3800	2500	4000	5000	3800	5000	3800	2500	4000		' T	3800	5000	' T	' Т	 -	T							' T		' Т	, -
					5000							5000		T	Т	' Т	' Т	' T		T	T	T	т	' Т	Т	т
					5000							5000		T	' Т	T	' T	' T	- -	T		 -	т	' Т	' T	т
					5000							5000		T	T	T	' Т	' T	т	T	' T	' T	Т	т	' Т	T
					5000							5000		Т	Т	T	T	T	T	T	T.	T	T	T.	T	T
					5000							5000		Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
2800					5000				5000			5000		Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
2800	3500	4000	5000	2800	5000	2800	3500	4000	5000	Т	2800	5000	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
	3500	4000	5000		5000		3500	4000	5000	Т		5000	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
		4000	5000		5000			4000	5000	Т		5000	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
			5000		5000				5000	Т		5000	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
			5000		5000				5000	Т		5000	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
2800	3500	4000	5000	2800	5000	2800	3500	4000	5000	Т	2800	5000	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
2800	3500	4000	5000	2800	5000	2800	3500	4000	5000	Т	2800	5000	Т	Т	Т	T	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
2800	3500	4000	5000	2800	5000	2800	3500	4000	5000	Т	2800	5000	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
		4000	5000		5000			4000	5000	Т		5000	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
			5000		5000				5000	T		5000	Т	Т	Т	T	T	Т	Т	Т	Т	Т	Т	Т	Т	Т
					5000				5000	6000			9500				9500		9500	12000	15000			12000	15000	19000
										6000			9500	9500			9500		9500	12000				12000	15000	19000
													9500				9500		9500		15000			12000		
																	9500		9500	12000				12000	15000	19000
					5000				5000	6000		5000	9500	9500			9500		9500	12000				12000		
									===				05-	05-		_	9500		9500			19000			15000	
					5000				5000	6000							9500		9500			19000		12000		
										6000			-	-			9500		9500			19000			15000	
													9500				9500 9500		9500			19000			15000	
																	9500		9500 9500			19000 1600	9500			1600
					5000				5000	6000		5000	0500	0500			9500		9500	9500	1250	19000		9500 12000	15000	
					3000				3000	0000		3000	9300				9500		9500			19000			15000	
															9300	3300	9300	9300	9300	9500		1600	9300	9500		1600
																				3330	1230	1000		3300	1230	.000

11 .Ordering notice

- 11.1 Quick selection of circuit breaker
- 11.1.1 Quick selection of power distribution and motor protection circuit breakers1



Note: 1) For customer needs beyond the technical requirements of the sample, you can contact the company's sales department or technical department as a special order processing; The body and accessories should be written separately when ordering. If the user requires the factory to assemble the body and accessories, it must be specified when ordering, otherwise the factory will ship separately; Motor protection is only applicable to 3P / 4P;


²⁾ 4B: Neutral poles without protection, can be operated with other three poles; 4C: Neutral poles with protection, can be operated with other three poles.

³⁾ Only NM8N-1600 has motor type

11.1.2 Quick selection of DC circuit breaker

Note: 1) 1P / 2P is limited to 125 and 250 frame products.

Note: 1) 2P is only for 125 and 250 frame products.

B

11.2 NM8N accessory models selection table

Accessory type	Code	Specification	NM8N-125	NM8N-250
Auxiliary contact	AX	Universal Neutral	AX21-M8 AX21-M8 N	
		Universal	AL21-M8	
Alarm contact	AL	Neutral	AL21-M8 N	
		AC48V	SHT21-M8 AC48V	SHT22-M8 AC48V
		AC110V	SHT21-M8 AC110V	SHT22-M8 AC110V
Shunt release	SHT	AC220-240V AC380-415V	SHT21-M8 AC220-240V SHT21-M8 AC380-415V	SHT22-M8 AC220-240V SHT22-M8 AC380-415V
Shunt release	SHI	DC24V	SHT21-M8 AC380-415V SHT21-M8 DC24V	SHT22-M8 DC24V
		DC220V	SHT21-M8 DC220V	SHT22-M8 DC220V
		AC48V	UVT21-M8 AC48V	UVT22-M8 AC48V
		AC110V	UVT21-M8 AC110V	UVT22-M8 AC110V
		AC220-240V	UVT21-M8 AC220-240V	UVT22-M8 AC220-240V
Under-voltage release	UVT	AC380-415V	UVT21-M8 AC380-415V	UVT22-M8 AC380-415V
omaci romago romaco		DC24V	UVT21-M8 DC24V	UVT22-M8 DC24V
		DC48V DC110-120V	UVT21-M8 DC48V UVT21-M8 DC110-120V	UVT22-M8 DC48V UVT22-M8 DC110-120V
		DC220V	UVT21-M8 DC220V	UVT22-M8 DC220V
		AC110/DC110-120V	MOD21-M8 AC110/DC110-120V	MOD22-M8 AC110/DC110-120V
		AC220-240/DC220V	MOD21-M8 AC220-240V/DC220V	MOD22-M8 AC220-240V/DC220V
Motor-driven mechanism	MOD	AC380-415V	MOD21-M8 AC380-415V	MOD22-M8 AC380-415V
		DC24V	MOD21-M8 DC24V	MOD22-M8 DC24V
Economic extended	SRH	3P	SRH21-M8 3P	SRH22-M8 3P
rotary handle	SIXII	4P	SRH21-M8 4P	SRH22-M8 4P
		Thermal magnetic (T)	DRH21-M8 T	DRH22-M8 T
Divert veteral	DBII	Magnetic (M)	DRH21-M8 M	DRH22-M8 M
Direct rotary handle	DRH	Electronic (E) Switch	'	DRH22-M8 E
		disconnector (SD)	DRH21-M8 M	DRH22-M8 SD
		Thermal magnetic (T)	ERH21-M8 T	ERH22-M8 T
		Magnetic (M)	ERH21-M8 M	ERH22-M8 M
Extended rotary handle	ERH	Electronic (E)	/	ERH22-M8 E
•		Switch	ERH21-M8 M	ERH22-M8 SD
		disconnector (SD)	EI(1/21-14/014)	EN 122-1410 3D
Extended rotary handle	LHD	3P/4P	/ 	/
Locking system	KLK	3P	KLK21-M8 MIT21-M8 3P	KLK22-M8 MIT22-M8 3P
Mechanical interlock	MIT	4P	MIT21-M6 3P	MIT22-M8 4P
		3P	TCV21-M8 3P	TCV22-M8 3P
Short terminal cover	TCV	4P	TCV21-M8 4P	TCV22-M8 4P
Long terminal cover	TCE	3P	TCE21-M8 3P	TCE22-M8 3P
Long terminal cover	ICE	4P	TCE21-M8 4P	TCE22-M8 4P
		1P	FCP21-M8 1P	FCP22-M8 1P
Front connection plate	FCP	2P	FCP21-M8 2P	FCP22-M8 2P
•		3P 4P	FCP21-M8 3P FCP21-M8 4P	FCP22-M8 3P FCP22-M8 4P
		1P	RCP21-M8 1P	RCP22-M8 1P
		2P	RCP21-M8 2P	RCP22-M8 2P
Rear connection plate	RCP	3P	RCP21-M8 3P	RCP22-M8 3P
		4P	RCP21-M8 4P	RCP22-M8 4P
Cage clamp terminal	CCT	1hole	CCT21-M8	CCT22-M8
		1hole	MC21-M8(1)	MC22-M8(1)
		2hole	//	MC22-M8(2)
Cable connector	MC	3hole 4hole	/,	/,
		6hole	//	/ MC22-M8(6)
		3P Front connection	/ PIA21F-M8 3P	PIA22F-M8 3P
DI L	DIA	4P Front connection	PIA21F-M8 4P	PIA22F-M8 4P
Plug-in base	PIA	3P Rear connection	PIA21B-M8 3P	PIA22B-M8 3P
		4P Rear connection	PIA21B-M8 4P	PIA22B-M8 4P
Plug-in safety device	PISD	Thermal magnetic (T)	PISD21-M8 T	PISD22-M8 T
riag-iii salety device	1130	Electronic (E)	/	PISD22-M8 E
		3P Front connection	/	/
Draw-out base	DOB	4P Front connection	/	/
		3P Rear connection	/	/
		4P Rear connection	/	/
		3P	DRA21-M8 3P	DRA22-M8 3P
DIN-rail adapter	DRA	4P	DRA21-M6 3P	DRA22-M8 4P
		["	DIGICI WO TI	STORE INIO TI
			/	COMA22-M8 DC24V 0.5m
		DC24V	/	COMA22-M8 DC24V 1.5m
Communication module	СОМА		/	COMA22-M8 DC24V 3m
Communication module	COIVIA		/	COMA22-M8 AC230V 0.5m
		AC230V	//	COMA22-M8 AC230V 1.5m
Battery box	PSU	AC230V	/	COMA22-M8 AC230V 1.5m COMA22-M8 AC230V 3m PSU22-M8

NM8N-400	NM8N-630	NM8N-800	NM8N-1600
AX21-M8			
AX21-M8 N			
AL21-M8			
AL21-M8 N			
SHT22-M8 AC48V		SHT24-M8 AC48V	SHT25-M8 AC48V
SHT22-M8 AC110V		SHT24-M8 AC110V	SHT25-M8 AC110V
SHT22-M8 AC220-240V		SHT24-M8 AC220-240V	SHT25-M8 AC220-240V
SHT22-M8 AC380-415V		SHT24-M8 AC380-415V	SHT25-M8 AC380-415V
SHT22-M8 DC24V		SHT24-M8 DC24V	SHT25-M8 DC24V
SHT22-M8 DC220V		SHT24-M8 DC220V	SHT25-M8 DC220V
UVT22-M8 AC48V		UVT24-M8 AC48V	UVT25-M8 AC48V
UVT22-M8 AC110V		UVT24-M8 AC110V	UVT25-M8 AC110V
UVT22-M8 AC220-240V		UVT24-M8 AC220-240V	UVT25-M8 AC220-240V
UVT22-M8 AC380-415V		UVT24-M8 AC380-415V	UVT25-M8 AC380-415V
UVT22-M8 DC24V		UVT24-M8 DC24V	UVT25-M8 DC24V
UVT22-M8 DC48V		UVT24-M8 DC48V	UVT25-M8 DC48V
UVT22-M8 DC110-120V		UVT24-M8 DC110-120V	UVT25-M8 DC110-120V
UVT22-M8 DC220V		UVT24-M8 DC220V	UVT25-M8 DC220V
MOD23-M8 AC110/DC110-120V		MOD24-M8 AC110/DC110-120V	MOD25-M8 AC110/DC110-120V
MOD23-M8 AC220-240V/DC220V		MOD24-M8 AC220-240V/DC220V	MOD25-M8 AC220-240V/DC220V
MOD23-M8 AC380-415V		MOD24-M8 AC380-415V	MOD25-M8 AC380-415V
MOD23-M8 DC24V		MOD24-M8 DC24V	MOD25-M8 DC24V
SRH23-M8		SRH24-M8	SRH25-M8
DRH23-M8 T		/,	l <u>/</u>
DRH23-M8 M	1	<u> </u>	<u> /</u>
DRH23-M8 E		/	/
DRH23-M8 SD		/	/
		<u>'</u>	<u>'</u>
ERH23-M8 T		/	/
ERH23-M8 M		/	/
ERH23-M8 E	_	/	//
ERH23-M8 SD		/	/
/		/	LHD25-M8
KLK23-M8		/	/
MIT23-M8 3P		, AUTO 4 140	/
MIT23-M8 4P		MIT24-M8	//
TCV23-M8 3P		TCV24-M8 3P	//
TCV23-M8 4P		TCV24-M8 4P	//
TCE23-M8 3P		TCE24-M8 3P	/
TCE23-M8 4P		TCE24-M8 4P	/
/		/	/
/		/	/
FCP23-M8 3P		/	FCP25-M8 3P
FCP23-M8 4P		/	FCP25-M8 4P
/,		/,	/,
/ DCD23 A40 3D		/ DCD24 M0 2D	/,
RCP23-M8 3P		RCP24-M8 3P	/
RCP23-M8 4P		RCP24-M8 4P	/
CCT23-M8		/	/
/ MC23-M8(2)		MC24-M8(2)	,
/		/ / / / / / / / / / / / / / / / / / /	MC25-M8(3)(800)
MC23-M8(4)		//	MC25-M8(4)(1000/1250)
/	1	'/	/
PIA23F-M8 3P		1/	//
PIA23F-M8 4P		//	/
PIA23B-M8 3P		1/	//
PIA23B-M8 4P		1/	1/
PISD23-M8 T		PISD24-M8 T	//
PISD23-M8 E	1	PISD24-M8 E	//
DOB23F-M8 3P(400A)	DOB23F-M8 3P(630A)	DOB24F-M8 3P	//
DOB23F-M8 4P(400A)	DOB23F-M8 4P(630A)	DOB24F-M8 4P	1/
DOB23F-M8 3P(400A)	DOB23F-M8 3P(630A)	DOB24F-M8 4F	/
DOB23B-M8 4P(400A)	DOB23B-M8 4P(630A)	DOB24B-M8 4P	/
DOSD23-M8 T	DOD23B-IVIO 4P(03UA)	DOSD24-M8 T	/
DOSD23-M8 E		DOSD24-M8 E	\',
/		/	\' ₁
[⁷ .		1/	\'/
1/		1/	/
COMA22-M8 DC24V 0.5m			
/ COMA22-M8 DC24V 0.5m COMA22-M8 DC24V 1.5m			
COMA22-M8 DC24V 1.5m			
COMA22-M8 DC24V 1.5m COMA22-M8 DC24V 3m			
COMA22-M8 DC24V 1.5m COMA22-M8 DC24V 3m COMA22-M8 AC230V 0.5m			
COMA22-M8 DC24V 1.5m COMA22-M8 DC24V 3m			
COMA22-M8 DC24V 1.5m COMA22-M8 DC24V 3m COMA22-M8 AC230V 0.5m COMA22-M8 AC230V 1.5m			

Note	